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Abstract

The idea of treating negation as a modality manifests itself in various logical systems,
especially in Došen’s propositional logic N, whose negation is weaker than that of Johansson’s
minimal logic. Among the interesting extensions of N are the propositional logics N∗ and
Hype; the former was proposed in [1], while the latter has recently been advocated in [12],
but was first introduced in [13]. I shall develop predicate versions of N and N∗, and provide a
simple Routley-style semantics for the predicate version of Hype. The corresponding strong
completeness results will be proved by means of a useful general technique. It should be
remarked that this work can also be seen as a starting point for the investigation of intuiti-
onistic predicate modal logics.

Keywords modal negation · intuitionistic modal logics · quantification · Heyting–Ockham logic ·
Hype · Routley star
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1 Introduction

The idea of treating negation as a modality manifests itself in various propositional logics. Of
special interest are those of them whose positive fragments coincide with that of (propositional)
intuitionistic logic, and it is reasonable to develop their predicate versions — taking into account
the importance of predicate intuitionistic logic.

Recall that in intuitionistic logic, proving Φ provides a verification of Φ, while proving ¬Φ
gives us a demonstration that

each verification of Φ yields a verification of ⊥,

and since ⊥ must not be verified, it implies that Φ cannot be verified. Došen proposed to take
seriously the idea that

negation can be thought of as a negative modality

— or more precisely, as a modal operator of impossibility; see [2, 3], and also Došen’s entry in
[7]. While in the standard possible world semantics for intuitionistic logic we have

w 
 ¬Φ ⇐⇒ u 1 Φ for all u > w,

this appears to be too strong for Došen’s proposal, so 6 is replaced by an accessibility relation
R which agrees with 6 in a suitable way. This leads to a propositional logic N; it plays a key
role in developing Došen’s perspective on intuitionistic modal logics. Axiomatically, N employs
the contraposition rule, which is rendered as

Φ→ Ψ (CR)¬Ψ→ ¬Φ

Clearly, it can be viewed as an antimonotonicity rule. As in modal logic, CR — although trivially
admissible — should not be derivable, viz.

(Φ→ Ψ)→ (¬Ψ→ ¬Φ) (CR′)

should not belong to our logic. Thus even Johansson’s minimal logic is too strong, because it
treats ¬Φ as Φ→ ⊥, and hence contains CR′.

Next, N can be extended in various ways. Among the interesting extensions of N are:
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� the so-called Heyting–Ockham logic N∗, which was was proposed in [1] as a framework for
studying foundations of well-founded semantics for logic programs with negation (cf. [8]);

� the logic Hype, which has been recently advocated in [12] as a system suitable for dealing
with hyperintensional contexts.1

It is known from [1] that N∗ has an attractive Routley-style semantics, in which we have

w 
 ¬Φ ⇐⇒ w∗ 1 Φ

where ∗ is an anti-monotone function on the set of all worlds (cf. also [16]). More precisely, N∗

turns out to be strongly complete with respect to the class of all ‘starred frames’. On the other
hand, Odintsov has recently observed that Hype can be obtained from N∗ by adding the laws of
double negation introduction and elimination.2

I shall develop predicate versions of N and N∗, and provide an appropriate Routley-style
semantics for QHype. In particular, there will be two predicate versions of N∗, one of which
does not seem to have a Routley-style semantics, only a Došen-style semantics, while the other
has both. The corresponding strong completeness results will be proved by means of a general
technique, which can be used for related systems.

It should be remarked that the Routley-style semantics for QHype looks much simpler than
the semantics given in [12]. Furthermore, only a sketch of proof for the weak completeness result
for QHype has been provided in [12], which relies largely on [9].

Finally, in [12], Leitgeb mistakenly claimed that QHype has the disjunction property, but his
argument is known to be flawed; cf. [15, 5]. I shall provide a simple argument which shows that
both the disjunction property and the existential property fail for predicate logics of a certain
kind, including QHype and the two quantified versions of N∗.

2 Preliminaries

Let σ be a signature, i.e. a collection of non-logical symbols, each of which has an arity. As far
as expanding domain semantics is concerned, there are well-known problems with equality and
function symbols.3 In this context we shall assume, for simplicity, that = is not in σ, and every
function symbol in σ is of arity 0, and hence represents a constant. Define Predσ to be the set
of predicate symbols in σ and Constσ to be the set of constant symbols in σ. The latter will be
interpreted rigidly: each constant will have the same value at all accessible worlds.

Fix once and for all a countable collection Var of variables. Then let Termσ be the set of σ-
terms. Thus Termσ = Constσ ∪Var. Our logical vocabulary includes:

� the connective symbols →, ∧, ∨ and ¬;

� the quantifier symbols ∀ and ∃.
1H. Wansing has informed me that Hype was first introduced in [13]. On the other hand, as far as I know, the

predicate version QHype of Hype has been presented only in [12] (without reference to [13]), and the application
to semantic paradoxes in [12] requires QHype.

2The reader may consult [15] for further discussion.
3One of the key problems is that if we treat = as a binary predicate symbol, and a1 6= a2 at a world w, then

it can happen that a1 = a2 at some world accessible from w; the usual trick of turning equivalence relations into
identity relations (as in classical predicate logic) may also break down. Clearly, this implies some problems with
function symbols as well. See [6] for more information.
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Denote by Formσ the set of (first-order) σ-formulas, and by Sentσ the set of σ-sentences, which
are σ-formulas with no free variable occurrences, as usual. For convenience, we shall abbreviate
(Φ→ Ψ) ∧ (Φ→ Ψ) to Φ↔ Ψ.

By a σ-substitution of terms, or just σ-substitution, we mean a function from Var to Termσ.
If Φ is a σ-formula in which only x1, . . . , xn may occur free, and λ is a σ-substitution, we write
λΦ for the result of simultaneously substituting λ (x1), . . . , λ (xn) for all free occurrences of x1,
. . . , xn respectively in Φ; in the case when

λ = {(x, t)} ∪ {(y, y) | y ∈ Var and y 6= x}

(where x ∈ Var and t ∈ Termσ), the notation Φ (x/t) will be used instead of λΦ.4 Call a σ-sub-
stitution λ ground iff λ (x) ∈ Constσ for every x ∈ Var.

A σ-structure provides a non-empty set and appropriate interpretations of the symbols of σ
over it. We generally use A, B, etc. to represent σ-structures with domains A, B, etc. Now let
A be an arbitrary σ-structure. For each ε ∈ σ, take

εA := the interpretation of ε in A.

Sometimes it will be convenient to expand σ to

σA := σ ∪ {a | a ∈ A}

where a’s are new constant symbols, and pass from A to its σA-expansion A∗ such that

aA
∗

:= a for any a ∈ A.

Then σA-formulas will also be called A-formulas. Further, if Φ is an A-sentence, we shall often
write A |= Φ instead of A∗ |= Φ. By an A-substitution will be meant a σA-substitution.

Finally, when concerned exclusively with non-empty subsets, we shall abbreviate the phrase
‘S is a non-empty subset of T ’ as S v T .

3 A quantified version QN of Došen’s N

We begin by expanding Došen’s propositional logic N, which yields the weakest quantified logic
we shall be concerned with. It should be remarked that the machinery presented in this section
will be used heavily later on.

3.1 A Hilbert-type calculus

Our predicate calculus naturally expands the propositional Hilbert-type system for N described
in [3]. It employs the following axiom schemata:

I1. Φ→ (Ψ→ Φ);

I2. (Φ→ (Ψ→ Θ))→ ((Φ→ Ψ)→ (Φ→ Θ));

C1. Φ ∧Ψ→ Φ;

4Naturally, we want t to be free for x in Φ, i.e. either t ∈ Constσ , or t ∈ Var and no free occurrence of x in Φ
is within the scope of a t-quantifier. Similarly in the general case.
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C2. Φ ∧Ψ→ Ψ;

C3. Φ→ (Ψ→ Φ ∧Ψ);

D1. Φ→ Φ ∨Ψ;

D2. Ψ→ Φ ∨Ψ;

D3. (Φ→ Θ)→ ((Ψ→ Θ)→ (Φ ∨Ψ→ Θ));

N. ¬Φ ∧ ¬Ψ→ ¬ (Φ ∨Ψ);

Q1. ∀xΦ→ Φ (x/t) where t is free for x in Φ;

Q2. Φ (x/t)→ ∃xΦ where t is free for x in Φ.

Thus we have the ‘positive’ axioms of intuitionistic predicate logic plus all instances of N. Also,
we employ four inference rules:

MP. modus ponens, i.e.

Φ Φ→ Ψ ;
Ψ

CR. the contraposition rule, which is expressed as

Φ→ Ψ ;
¬Ψ→ ¬Φ

BR1. the Bernays rule for ∀, which is rendered as

Φ→ Ψ provided that x is not free in Φ;
Φ→ ∀xΨ

BR2. the Bernays rule for ∃, which is rendered as

Φ→ Ψ provided that x is not free in Ψ.∃xΦ→ Ψ

These are the usual rules of intuitionistic predicate logic plus CR. Observe that if we treat ¬ as
an impossibility operator, then CR can be thought of as a modal rule. Clearly, ¬ is weaker than
intuitionistic negation, and even that of Johansson’s minimal logic.

Let QNσ denote the least set of σ-formulas containing the axioms of our calculus and closed
under its rules of inference. Certainly, QNσ depends on σ, but the QNσ’s can be viewed as rep-
resenting the same logic, QN. For every Γ ⊆ Formσ, define

Disj (Γ) := {Φ0 ∨ . . . ∨ Φn | n ∈ N and {Φ0, . . . ,Φn} ⊆ Γ}.5

Given Γ ⊆ Sentσ and ∆ v Formσ, we write Γ ` ∆ iff some element of Disj (∆) can be obtained
from elements of Γ ∪ QNσ by means of MP, BR1 and BR2. As might be expected, Φ ` ∆ and Γ `
Φ abbreviate {Φ} ` ∆ and Γ ` {Ψ} respectively.

5When n = 0, we have Φ0 ∨ . . . ∨ Φn = Φ0. Thus Disj (Γ) contains non-empty disjunctions only.
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Theorem 3.1 (Deduction Theorem). For any Γ ∪ {Φ} ⊆ Sentσ and Ψ ∈ Formσ,

Γ ∪ {Φ} ` Ψ ⇐⇒ Γ ` Φ→ Ψ.

Proof. Exactly as in intuitionistic predicate logic.

Here is another useful observation.

Theorem 3.2 (Replacement). Let {Φ,Ψ,Ψ′} ⊆ Formσ, and suppose Φ′ is obtained from Φ by
replacing some occurrence of Ψ by Ψ′. Then ` Ψ↔ Ψ′ implies ` Φ↔ Φ′.

Proof. By induction on the complexity of Φ.

In the case where Φ is atomic the result is immediate.

Suppose Φ = ¬Ψ. The result then follows by the inductive hypothesis, CR, and C1–3.

In the other cases one can argue as in intuitionistic predicate logic.

As in the propositional case, we can go on to define a general notion of logic. Roughly, by a
(normal) logic is meant a collection of formulas closed under the four rules above and substitu-
tions. To make this precise, one can adopt the machinery of [6, Chapter 2]. Each logic that in-
cludes QN is called a QN-extension. Then, given a QN-extension L, we define

Γ `L ∆ :⇐⇒ L ∪ Γ ` ∆.

So Theorems 3.1 and 3.2 and many results below will generalise readily to QN-extensions; most
importantly, the canonical model construction from Section 3.5 can be suitably modified.

Evidently, for every {Φ,Ψ} ⊆ Formσ we have ` (Φ→ Φ)↔ (Ψ→ Ψ); thus by Theorem 3.2,
Φ→ Φ and Ψ→ Ψ are practically interchangeable. Now take

> := Φ̃→ Φ̃ and ⊥ := ¬>

where Φ̃ is a fixed σ-sentence. It should be remarked that this paper focuses on logics in which
there is a significant difference between ¬Φ and Φ → ⊥, which represent two sorts of negation.
We shall occasionally abbreviate Φ→ ⊥ to −Φ.

3.2 A possible world semantics

As in [3], by a frame we mean a triple W = 〈W,6, R〉 where:

� W is a non-empty set;

� 6 is a preordering on W ;

� R is a binary relation on W such that 6 ◦R ⊆ R ◦ 6−1.6

Next, by a system of σ-structures over W we mean an indexed family A = 〈Aw | w ∈ W 〉 of σ-
structures, i.e. a function from W to σ-structures. Finally, given a frame W and a system A of
σ-structures over it, call the pairM = 〈W,A 〉 an expanding domain model for QNσ—or simply
a QNσ-model—iff for all u, v ∈W the following hold:

� if u 6 v or uRv, then Au ⊆ Av;
6Here M ◦N denotes the composition of M and N , while M−1 denotes the inverse of M .
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� if u 6 v or uRv, then cAu = cAv for any c ∈ Constσ;

� if u 6 v, then PAu ⊆ PAv for any P ∈ Predσ.

Now let M be a QNσ-model. For every w ∈W and every Aw-sentence Φ,

M, w 
 Φ

is defined inductively as follows:

� M, w 
 Ψ iff Aw |= Ψ, provided that Ψ is atomic;

� M, w 
 Ψ ∧Θ iff M, w 
 Ψ and M, w 
 Θ;

� M, w 
 Ψ ∨Θ iff M, w 
 Ψ or M, w 
 Θ;

� M, w 
 Ψ→ Θ iff for each u ∈W , if w 6 u, then M, u 
 Ψ implies M, u 
 Θ;

� M, w 
 ¬Ψ iff for each u ∈W , if wRu, then M, u 1 Ψ;

� M, w 
 ∃xΨ iff M, w 
 Ψ (x/a) for some a ∈ Aw;

� M, w 
 ∀xΨ iff for each u ∈W , if w 6 u, then M, u 
 Ψ (x/a) for all a ∈ Au.

We shall often write w 
 Φ instead of M, w 
 Φ when M is fixed by the context.

As in the propositional version of QN, it is easy to obtain:

Lemma 3.3. Let M be a QNσ-model. For any w ∈W and Aw-sentence Φ,

M, w 
 Φ =⇒ M, u 
 Φ for all u > w.

Proof. By induction on the complexity of Φ.

In the case where Φ is atomic the result is immediate.

Suppose Φ = ¬Ψ. Assume w 
 Φ and w 6 u. Recall, 6 ◦R ⊆ R ◦ 6−1. So for every v ∈W ,
if uRv, then there exists t ∈W such that wRt and v 6 t, hence t 1 Ψ and v 1 Ψ (for otherwise
t 
 Ψ by the inductive hypothesis). Thus u 
 Φ.

In the other cases one can argue as in intuitionistic predicate logic.

Given Γ ⊆ Sentσ and ∆ v Formσ, we write Γ � ∆ iff for any QNσ-model M = 〈W,A 〉, w
∈W and ground Aw-substitution λ,

M, w 
 Φ for all Φ ∈ Γ =⇒ M, w 
 λΨ for some Ψ ∈ ∆.

Using Lemma 3.3, a semantic analogue of the Deduction Theorem can be readily established:

Theorem 3.4. For any Γ ∪ {Φ} ⊆ Sentσ and Ψ ∈ Formσ,

Γ ∪ {Φ} � Ψ ⇐⇒ Γ � Φ→ Ψ.

Proof. Exactly as in intuitionistic logic.

One might wish to consider frame conditions which are stronger than 6 ◦R ⊆ R ◦ 6−1. For
instance, the condition

6 ◦R ⊆ R

arises naturally in applications—it corresponds to so-called ‘condensed frames’ in [3] and other
works of Došen. Furthermore, frames that satisfy the stronger condition

6 ◦R ⊆ R ◦ 6−1 ⊆ R,

are called ‘strictly condensed’ in [3]. (Cf. also discussion in [11, Section 3].)
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3.3 Soundness

The soundness argument for QN combines the argument for N with that for intuitionistic pred-
icate logic in a straightforward way. It is instructive to supply some details, however.7

Lemma 3.5. For every Φ ∈ Formσ,

` Φ =⇒ � Φ.

Proof. Suppose ` Φ. Then Φ ∈ QNσ, i.e. there exists a finite sequence

Φ0, Φ1, . . . , Φn = Φ

of σ-formulas such that for each i ∈ {0, . . . , n} one of the following conditions holds:

a. Φi is an axiom;

b. Φi is obtained from earlier Φj and Φk by MP;

c. Φi is obtained from earlier Φj by CR;

d. Φi is obtained from earlier Φj by BR1 or BR2.

Let M be a QNσ-model. We are going to prove inductively that M, w 
 λΦi for all w ∈W and
ground Aw-substitutions λ.

Suppose Φi is an axiom of the type N, i.e. has the form ¬Ψ ∧ ¬Θ→ ¬ (Ψ ∨Θ). Evidently, it
suffices to show that for any w ∈W and ground Aw-substitution λ,

w 
 ¬λΨ ∧ ¬λΘ =⇒ w 
 ¬ (λΨ ∨ λΘ).

Let w and λ be as above, and assume w 
 ¬λΨ ∧ ¬λΘ. For each u ∈ W , if wRu, then u 1 λΨ
and u 1 λΘ, hence u 1 λΨ ∨ λΘ. Thus w 
 ¬ (λΨ ∨ λΘ) as desired. For the other axioms one
can argue as in intuitionistic predicate logic.

Suppose Φi is obtained from earlier Φj by CR; so for some Ψ and Θ we have

Φj = Ψ→ Θ and Φi = ¬Θ→ ¬Ψ.

By the inductive hypothesis, v 
 λΨ → λΘ for all v ∈ W and ground Av-substitutions λ. Evi-
dently, it is enough to show that for any w ∈W and ground Aw-substitution λ,

w 
 ¬λΘ =⇒ w 
 ¬λΨ.

Let w and λ be as above, and assume w 
 ¬λΘ. For each u ∈ W , if wRu, then u 1 λΘ, which
implies u 1 λΨ, since otherwise u 1 λΨ→ λΘ. Thus w 
 ¬λΨ as desired.

For the other rules one can argue as in intuitionistic predicate logic.

In view of the compactness of `, this leads to the following.

Theorem 3.6. For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ ` ∆ =⇒ Γ � ∆.

Proof. Assume Γ ` ∆, i.e. Γ ` Φ for some Φ ∈ Disj (∆). So there must be a finite subset Λ of Γ
such that Λ ` Φ. The argument now divides into two cases.

Suppose Λ = ∅. Then � Φ by Lemma 3.5. Consequently Γ � ∆.

Suppose Λ = {Ψ0, . . . ,Ψn}. Clearly, we then have Ψ0 ∧ · · · ∧Ψn ` Φ, which is equivalent to
` Ψ0 ∧ · · · ∧Ψn → Φ by Theorem 3.1. Therefore � Ψ0 ∧ · · · ∧Ψn → Φ by Lemma 3.5—which is
equivalent to Ψ0 ∧ · · · ∧Ψn � Φ by Theorem 3.4. Consequently Γ � ∆.

7In [3], the soundness proof for N was omitted altogether.
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3.4 Remarks on new constants

To implement Henkin’s approach to completeness, we often need to enrich the original signatu-
re to include enough ‘witnesses’. The results in this section will help us avoid unwanted effects.
The proofs are exactly as in classical or intuitionistic predicate logic, so we omit them. For any
set S, take

σS := σ ∪ {s | s ∈ S}
where s’s are new constant symbols. Given a set Γ of formulas, we shall write Const (Γ) for the
collection of all constant symbols occurring in elements of Γ.

In fact, ` depends on the choice of σ. Occasionally, when we wish to emphasise that QNσ is
employed, `σ is used instead of `. Notice that new constant symbols do no harm:

Proposition 3.7. Let Γ ⊆ Sentσ and ∆ v Formσ. Then for any set S,

Γ `σ ∆ ⇐⇒ Γ `σS ∆.

Next, we have:

Proposition 3.8. Let Γ ⊆ Sentσ and ∆ v Formσ. Then for each variable x and each constant
symbol c not in Const (Γ ∪∆),

Γ ` ∆ ⇐⇒ Γ ` ∆ (x/c)

where ∆ (x/c) denotes {Φ (x/c) | Φ ∈ ∆}.

Among other things, this allows us to safely add witnesses:

Proposition 3.9. Let Γ ∪ {∃xΨ} ⊆ Sentσ and ∆ v Formσ. For each constant symbol c not in
Const (Γ ∪ {∃xΨ} ∪∆),

Γ ∪ {∃xΨ} ` ∆ ⇐⇒ Γ ∪ {∃xΨ,Ψ (x/c)} ` ∆.

Now we turn to a canonical model construction appropriate for QN-extensions.

3.5 Completeness

Call a σ-theory Γ prime iff it has the following properties:

� {Φ ∈ Sentσ | Γ ` Φ} ⊆ Γ;

� if Φ ∨Ψ ∈ Γ, then Φ ∈ Γ or Ψ ∈ Γ;

� if ∃xΦ ∈ Γ, then Φ (x/c) ∈ Γ for some constant symbol c.

As in intuitionistic predicate logic, we can obtain:

Lemma 3.10. Let Γ ⊆ Sentσ and ∆ v Formσ be such that Γ 0 ∆. Then for each set S of car-
dinality |Sentσ| there exists a prime σS-theory Γ′ ⊇ Γ such that Γ′ 0 ∆.

Proof. Take κ := |Sentσ|. Fix an arbitrary set S of cardinality κ. Throughout this proof ` will
stand for `σS . Clearly,

|SentσS | = max {|σS |,ℵ0} = |σS | = |S|.

Thus the σS-sentences can be arranged into a transfinite sequence of length κ:

SentσS = 〈Φα : α ∈ κ〉.

Now define 〈Γα : α ∈ κ〉 by transfinite recursion as follows.

9



� Suppose α = 0. Then Γα := Γ.

� Suppose α = β + 1 and Γβ ∪ {Φβ} 0 ∆ where Φβ does not start with ∃. Then

Γα := Γβ ∪ {Φβ}.

� Suppose α = β + 1 and Γβ ∪ {Φβ} 0 ∆ where Φβ has the form ∃xΨ. Then choose some c
in {s | s ∈ S} \ Const (Γβ ∪ {Φβ} ∪∆), and take

Γα := Γβ ∪ {Φβ ,Ψ (x/c)}.8

� Suppose α = β + 1 and Γβ ∪ {Φβ} ` ∆. Then Γα := Γβ .

� Suppose α is a limit ordinal. Then Γα :=
⋃
β∈α Γβ .

Using Propositions 3.7 and 3.9, it is straightforward to check that Γ′ :=
⋃
α∈κ Γα has the desir-

ed properties.

Sometimes a stronger notion is needed. More precisely, we call a prime σ-theory Γ strongly
prime iff it has the additional property:

� if Φ (x/c) ∈ Γ for all constant symbols c, then ∀xΦ ∈ Γ.

In particular, this kind of theory has been used in building the canonical model for intuitionis-
tic predicate logic with ‘constant domains’, which includes the following axiom scheme:

CD. ∀x (Φ ∨Ψ)→ Φ ∨ ∀xΨ for x not free in Φ.

Throughout this article we shall assume that every strongly prime theory contains all instances
of CD. As might be expected, the analogue of Lemma 3.10 holds (cf. also [6, Lemma 6.2.6]).

Lemma 3.11. Let Γ ⊆ Sentσ and ∆ v Formσ be such that Γ 0 ∆. Then for each set S of car-
dinality |Sentσ| there exists a strongly prime σS-theory Γ′ ⊇ Γ such that Γ′ 0 ∆.

Proof. Let κ and S be as in the previous proof. Again the σS-sentences can be arranged into a
transfinite sequence of length κ:

SentσS = 〈Φα : α ∈ κ〉.

Now define 〈(Γα,∆α) : α ∈ κ〉 by transfinite recursion as follows.

� Suppose α = 0. Then (Γα,∆α) := (Γ,∆).

� Suppose α = β + 1 and Γβ ∪ {Φβ} 0 ∆β where Φβ does not start with ∃. Then

(Γα,∆α) := (Γβ ∪ {Φβ},∆β).

� Suppose α = β + 1 and Γβ ∪ {Φβ} 0 ∆β where Φβ has the form ∃xΨ. Then choose a c in
{s | s ∈ S} \ Const (Γβ ∪ {Φβ} ∪∆), and take

(Γα,∆α) := (Γβ ∪ {Φβ ,Ψ (x/c)},∆α).

8Note that, by construction, we have
∣∣Const

(
Γβ ∪

{
Φβ

})
\ Const (Γ ∪∆)

∣∣ < κ = |S|.
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� Suppose α = β + 1 and Γβ ∪ {Φβ} ` ∆β where Φβ does not start with ∀. Then

(Γα,∆α) := (Γβ ,∆β ∪ {Φβ}).

� Suppose α = β + 1 and Γβ ∪ {Φβ} ` ∆ where Φβ has the form ∀xΨ. Then choose a c in
{s | s ∈ S} \ Const (Γβ ∪ {Φβ} ∪∆), and take

(Γα,∆α) :=

{
(Γβ ,∆β ∪ {Φβ ,Ψ (x/c)}) if Γβ 0 ∆ ∪ {Φβ ,Ψ (x/c)}
(Γβ ,∆β ∪ {Φβ}) otherwise.

� Suppose α is a limit ordinal. Then Γα :=
⋃
β∈α Γβ and ∆α :=

⋃
β∈α ∆β .

It is not hard to verify that Γ′ :=
⋃
α∈κ Γα has the desired properties.

Although we need only prime σ-theories for our present purposes, strongly prime σ-theories
will be employed heavily in Section 6.

For the rest of this section, S? will denote a fixed set of cardinality |Sentσ|. Intuitively, it is
a kind of ‘constant universe’. Call S ⊆ S? admissible iff |S? \ S| = |S?|.

Corollary 3.12. Let S ⊆ S? be admissible. Suppose Γ ⊆ SentσS and ∆ v FormσS are such that
Γ 0 ∆. Then there exist an admissible S′ ⊇ S and a prime σS′-theory Γ′ ⊇ Γ such that Γ′ 0 ∆.

Proof. Since |S? \ S| = |Sentσ|, there exists an admissible S′ ⊇ S such that

|S′ \ S| = |Sentσ|.

Moreover, |Sentσ| = |SentσS | because |S| 6 |Sentσ|. The result now follows by Lemma 3.10 (by
taking σ := σS and S := S′ \ S).

Corollary 3.13. Let S ⊆ S? be admissible. Suppose Γ ⊆ SentσS and ∆ v FormσS are such that
Γ 0 ∆. Then there exists a strongly prime σS?-theory Γ′ ⊇ Γ such that Γ′ 0 ∆.

Proof. This follows by Lemma 3.11 (by taking σ := σS and S := S? \ S).

Before proceeding further, a few observations concerning negation are worth making. Given
a collection Γ of formulas, we write Γ for {Φ | ¬Φ ∈ Γ}.

Proposition 3.14. Let Γ ⊆ Sentσ be such that {Φ ∈ Sentσ | Γ ` Φ} ⊆ Γ and Γ 6= ∅.

i. For every {Φ0, . . . ,Φn} ⊆ Sentσ, if {Φ0, . . . ,Φn} ⊆ Γ, then Φ0 ∨ · · · ∨ Φn ∈ Γ.

ii. For every Φ ∈ Sentσ, if Φ ` Γ, then Φ ∈ Γ.

Proof. i. Using N, it can easily be verified that ` ¬Φ0 ∧ · · · ∧ ¬Φn → ¬ (Φ0 ∨ · · · ∨ Φn), so the
result follows.

ii. Suppose Φ ` Γ. Then, in view of (i), we have Φ ` Ψ for some Ψ ∈ Γ. Thus ` Φ→ Ψ by
Theorem 3.1, hence ` ¬Ψ→ ¬Φ by CR. Since ¬Ψ ∈ Γ, we get ¬Φ ∈ Γ, i.e. Φ ∈ Γ.

Finally, we are ready to adapt the canonical model method to QNσ. Since there is no ambi-
guity, the subscript σ will generally be dropped. To this end, for every set S, take

PrimeS := the collection of all prime σS-theories.

11



Associate with each Γ ∈ PrimeS the σS-structure ASΓ with domain Const (Γ), such that all con-
stant symbols of σS are interpreted as themselves, and for any atomic σS-sentence Φ,

ASΓ |= Φ :⇐⇒ Φ ∈ Γ.

Denote by AΓ the σ-reduct of ASΓ . Clearly, every AΓ-sentence has the form

Φ
(
x1/c1, . . . , xn/cn

)
with {c1, . . . , cn} ⊆ Const (Γ), so we shall identify it with the σS-sentence Φ (x1/c1, . . . , xn/cn),
provided that no confusion arises. Let the set of possible worlds be defined as

WQN :=
⋃
{PrimeS | S is an admissible subset of S?}.

By the canonical frame for QN we mean WQN = 〈WQN,6QN, RQN〉 where

6QN :=
{

(Γ1,Γ2) ∈WQN ×WQN | Γ1 ⊆ Γ2

}
and

RQN :=
{

(Γ1,Γ2) ∈WQN ×WQN | Γ1 ∩ Γ2 = ∅, Const (Γ1) ⊆ Const (Γ2)
}
.

The canonical model for QN is MQN = 〈WQN,A QN〉 where

A QN (Γ) := AΓ.

One readily verifies that WQN is a QN-frame, and MQN is a QN-model.

Lemma 3.15 (Canonical Model Lemma). For any Γ ∈WQN and AΓ-sentence Φ,

MQN,Γ 
 Φ ⇐⇒ Φ ∈ Γ.

Proof. By induction on the complexity of Φ.

In the case where Φ is atomic the result is immediate.

Suppose Φ = ¬Ψ. Thus we need to show that

¬Ψ ∈ Γ ⇐⇒ for all ∆ ∈WQN, Γ ∩∆ = ∅ implies Ψ 6∈ ∆

(because the right-hand side is equivalent to MQN,Γ 
 ¬Ψ by the inductive hypothesis). Trivi-
ally, the implication from left to right holds. Now for the converse, assume ¬Ψ 6∈ Γ. There are
two possibilities.

i. Suppose Γ is non-empty. Therefore Ψ 0 Γ by Proposition 3.14. So by applying Corollary
3.12 we get ∆ ∈WQN such that ∆ 0 Γ (and hence Γ ∩∆ = ∅) while Ψ ∈ ∆.

ii. Suppose Γ is empty. Then any ∆ ∈WQN with Ψ ∈ ∆ will do the job.

Similarly to Došen, we did not require our prime theories to be non-trivial. So in (ii), one may
take ∆ := Sentσ where σ is the signature of Γ.9

In the other cases one can argue as in intuitionistic predicate logic.

Naturally, this leads to:

9However, it can also be shown that {Φ ∈ Sentσ | Ψ 0 Φ} 6= ∅ for every Ψ ∈ Sentσ ; thus Corollary 3.12 yields
a non-trivial prime theory ∆ containing Ψ.
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Theorem 3.16 (Strong Completeness). For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ ` ∆ ⇐⇒ Γ � ∆.

Proof. =⇒ This is Theorem 3.6.

⇐= Assume Γ 0 ∆. Fix an admissible S ⊆ S? of cardinality ℵ0 (hence |S| = |Var|). Let λ
be some one-to-one function from Var onto {s | s ∈ S}. Now take

∆′ := {λΨ | Ψ ∈ ∆}.

Using Proposition 3.8 we easily get Γ 0 ∆′. By Corollary 3.12, there exists Γ′ ∈WQN such that
Γ ⊆ Γ′ and Γ′ 0 ∆′. Clearly, λ can be viewed as a ground AΓ′ -substitution. So by Lemma 3.15,
MQN,Γ′ 
 Φ for every Φ ∈ Γ, while MQN,Γ′ 1 λΨ for all Ψ ∈ ∆. Consequently Γ 2 ∆.

It might be worth remarking that the ‘propositional segment’ of the completeness argument
provided above differs, in certain respects, from the argument for N given in [3].

� Došen employed single-succedent derivability and consequence relations. This, in a sense,
forced him to utilize Zorn’s lemma, and hence the axiom of choice, even for the countable
version of the canonical model lemma. This is not essential if multi-succedent derivability
and consequence relations are used, as the above proof shows.

� Došen emphasized that the set of all propositional formulas should be treated as a prime
theory in his canonical model construction. This is not necessary. Moreover, for logics in
which at least one negated formula is derivable, we have Γ 6= ∅ for every prime theory Γ;
so (ii) from the proof of Lemma 3.15 becomes irrelevant.

On the other hand, many observations about N can be transferred to QN. For instance, as was
noticed by Došen, the canonical frame for N is strictly condensed. The same holds for QN, of
course. Thus we may limit ourselves to strictly condensed frames if needed.10

Similarly to [3], a quantified version QJ of Johansson’s minimal logic J is obtained from QN
by adding the two schemata

(Φ→ Ψ)→ (¬Ψ→ ¬Φ) and Φ→ ¬¬Φ

— or equivalently, the single scheme

(Φ→ ¬Ψ)→ ((Φ→ ¬Ψ)→ ¬Φ).

As might be expected, one can prove the strong completeness of QJ with respect to an approp-
riate class of frames, which are intimately related to those used in the standard semantics of J;
cf. [3, Sections 4–5]. Moreover, certain extensions of QJ may be treated in a similar way; cf. [3,
Sections 6–7]. However, all of these derive the scheme

(Φ→ Ψ)→ (¬Ψ→ ¬Φ),

hence make the modal rule CR redundant. We shall be mainly concerned with systems in which
CR, though trivially admissible, is not derivable.

10Such frames are relatively easier to work with, and some authors start with condensed or strictly condensed
frames when dealing with Došen-like semantics (cf. [14, 11]) — compare this to how partial orderings are often
used instead of preorderings in the semantics of intuitionistic logic.
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Finally, Došen frames may be viewed as bimodal Kripke frames, so N can be translated into
a suitable classical bimodal logic as follows:

τ (p) := 2p;

τ (φ ◦ ψ) := τ (φ) ◦ τ (ψ) where ◦ ∈ {∧,∨};
τ (φ→ ψ) := 2 (τ (φ)→ τ (ψ));

τ (¬φ) := �¬φ.

Here 2 and � are interpreted by means of 6 and R respectively. The same holds for N∗, Hype,
and certain other extensions of N.11 This also carries over to the quantified setting, but the pre-
sent paper takes a different route, and deals explicitly with intuitionistic implication.

4 A useful extension QN◦ of QN

While > is valid in all QN-models, there are QN-models in which ⊥ (i.e. ¬>) is satisfiable. We
shall see how this rather undesirable feature can be avoided.

4.1 A Hilbert-type calculus

We define the logic QN◦ to be QN plus the following axiom schemata:

N1◦. ¬ (Φ→ Φ)→ Ψ;

N2◦. ¬¬ (Φ→ Φ).

More precisely, for a fixed signature σ, our predicate calculus for QN◦σ extends that for QNσ by
adding all axioms of the types N1◦ and N2◦. Obviously, the latter can be replaced by

⊥ → Φ and ¬⊥

respectively; cf. the end of Subsection 3.1. Given Γ ⊆ Sentσ and ∆ v Formσ, we write

Γ `◦ ∆ :⇐⇒ QN◦σ ∪ Γ ` ∆.

The syntactical technique described in Section 3 is easily adapted to `◦. From now on we shall
assume that our prime theories are non-trivial.

4.2 A possible world semantics

If W is a frame, and w ∈W , we let

R (w) := {u ∈W | wRu}.

Call a frame W serial iff R is serial, i.e. R (w) 6= ∅ for each w ∈W . Clearly, we have:

Proposition 4.1 (cf. [14, Section 2]). A frame W is serial iff the propositional versions of N1◦

and N2◦ hold in every model for N based on W.

By QN◦σ-models are meant QNσ-models based on serial frames, as one should expect. Then
given Γ ⊆ Sentσ and ∆ v Formσ, we write Γ �◦ ∆ iff for any QN◦σ-model M = 〈W,A 〉, w ∈W
and ground Aw-substitution λ,

M, w 
 Φ for all Φ ∈ Γ =⇒ M, w 
 λΨ for some Ψ ∈ ∆.

So �◦ is simply the relativisation of � to the class of QN◦σ-models.

11In particular, see [15, Section 5] for a classical bimodal logic into which Hype is embedded.
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4.3 Soundness and completeness

First, we quickly obtain:

Theorem 4.2. For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `◦ ∆ =⇒ Γ �◦ ∆.

Proof. As the argument for Theorem 3.6 shows, it suffices to prove that for any axiom Φ of the
type N1◦ or N2◦ we have �◦ Φ, i.e. Φ holds in every QN◦σ-model. So the desired result follows by
Proposition 4.1.

Now the canonical frame for QN◦, denoted WQN◦ = 〈WQN◦ ,6QN◦ , RQN◦〉, is defined exactly
as that for QN, but with ` replaced by `◦ throughout.12 Hence WQN◦ is simply the subframe of
WQN generated by the non-trivial worlds containing QN◦σ.

Proposition 4.3. WQN◦ is a serial frame.

Proof. Let Γ ∈WQN◦ .

Claim: 0◦ Γ, viz. QN◦ 0 Γ.

For otherwise > `◦ Γ. Evidently, the analogue of Proposition 3.14 for `◦ holds; therefore >
is in Γ, i.e. ¬> ∈ Γ. In view of N1◦, this implies the triviality of Γ, a contradiction.

So by applying Corollary 3.12 we get ∆ ∈WQN◦ such that Γ ∩∆ = ∅.

Naturally, by the canonical model for QN◦ we mean MQN◦ = 〈WQN◦ ,A QN◦〉 where A QN◦ is
the restriction of A QN to WQN◦ . Clearly, MQN◦ is a QN◦-model, and furthermore, the Canoni-
cal Model Lemma for QN implies that for QN◦.

Theorem 4.4 (Strong Completeness). For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `◦ ∆ ⇐⇒ Γ �◦ ∆.

Proof. This is perfectly analogous to the proof of Theorem 3.16.

As might be expected, we obtain the following.

Proposition 4.5. The {∧,∨,→,−}-fragment of QN◦ is precisely intuitionistic predicate logic.

Proof. Let M = 〈W,A 〉 be a QN◦σ-model. So in particular, R is serial. Then by choosing some
w′ ∈ R (w) for each w ∈W , we obtain

M, w 
 ⊥ ⇐⇒ M, w′ 1 > ⇐⇒ 0 6= 0.

Therefore −Φ behaves semantically as the negation of Φ in intuitionistic predicate logic. Hence
the result follows by the well-known completeness theorem for this logic (see, e.g., [6]).

5 A quantified version QN∗ of N∗

In [1], in the course of developing a framework for the study of logic programs with negation, a
propositional logic N∗ extending N was introduced. It turns out that N∗ is, in effect, intimately
connected with Došen’s work in intuitionistic modal logic (see [2]) as well as Vakarelov’s classi-
fication of negations (see [18]); cf. also [4]. We are going to bring quantifiers into the picture.

12As with QN, we do not explicitly mention σ since no ambiguity is likely to arise.
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5.1 A Hilbert-type calculus

Similarly to [1], we define the logic QN∗ to be QN◦ plus the axiom scheme

N∗. ¬ (Φ ∧Ψ)→ ¬Φ ∨ ¬Ψ.

Let `∗ denote the derivability relation of QN∗. Notice that the converses of N and N∗ are deriv-
able already in QNσ (even without N):

� ¬ (Φ ∨Ψ)→ ¬Φ ∧ ¬Ψ can be obtained from D1, D2 and C3 using CR and MP;

� ¬Φ ∨ ¬Ψ→ ¬ (Φ ∧Ψ) can be obtained from C1, C2 and D3 using CR and MP.

Thus QN∗σ proves De Morgan’s laws.

5.2 A possible world semantics

Call a frame W special iff R is serial, and for each w ∈ W , R (w) is directed with respect to 6.
The motivation for this definition comes from:

Proposition 5.1 (see [14]). A frame W is special iff the propositional versions of N1◦, N2◦ and
N∗ hold in every model for N based on W.

By QN∗σ-models are meant QNσ-models based on special frames, as one may expect. Let �∗

be the relativisation of � to the class of QN∗σ-models.

5.3 Soundness and completeness

We quickly obtain:

Theorem 5.2. For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `∗ ∆ =⇒ Γ �∗ ∆.

Proof. The result follows by Proposition 5.1.

Before proceeding further, let us make a useful observation about the behavior of ¬ in QN∗.
Given Γ ⊆ Sentσ, we take Γ∗ to be {Φ ∈ Sentσ | ¬Φ 6∈ Γ}; thus Γ∗ = Sentσ \ Γ.

Proposition 5.3 (cf. [14]). Suppose Γ ⊆ Sentσ has the following properties:

� Γ 6= Sentσ;

� {Φ ∈ Sentσ | Γ `∗ Φ} ⊆ Γ;

� for every Φ ∨Ψ ∈ Γ we have Φ ∈ Γ or Ψ ∈ Γ.

Then Γ∗ also has these properties.

Proof. In the propositional case, the desired result can be extracted from [14], or more precisely,
from the proof of Proposition 2.11 therein. We provide a slightly more general argument.

Since `∗ ¬⊥, we have ¬⊥ ∈ Γ, i.e. ⊥ 6∈ Γ∗. Thus Γ∗ 6= Sentσ.

Assume Γ∗ `∗ Φ. Then `∗ (Ψ1 ∧ · · · ∧Ψn)→ Φ for some {Ψ1, . . . ,Ψn} ⊆ Γ∗.13 In particular,
`∗ ¬Φ→ ¬ (Ψ1 ∧ · · · ∧Ψn). At the same time, since ¬Ψi 6∈ Γ for each i ∈ {1, . . . , n}, we obtain
¬Ψ1 ∨ . . . ∨ ¬Ψn 6∈ Γ. Therefore ¬ (Ψ1 ∧ . . . ∧Ψn) 6∈ Γ by N∗, hence ¬Φ 6∈ Γ, i.e. Φ ∈ Γ∗.

Assume Φ ∨Ψ ∈ Γ∗, i.e. ¬ (Φ ∨Ψ) 6∈ Γ. Then we have ¬Φ ∧ ¬Ψ 6∈ Γ. So ¬Φ 6∈ Γ or ¬Ψ 6∈ Γ,
i.e. Φ ∈ Γ∗ or Ψ ∈ Γ∗.

13Note that empty conjunction (which arises when n = 0) will traditionally be identified with >.
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Now the canonical frame for QN∗, denoted WQN∗ = 〈WQN∗ ,6QN∗ , RQN∗〉, is the subframe of
WQN generated by the non-trivial worlds containing QN∗σ.

Proposition 5.4. WQN∗ is a special frame.

Proof. Let Γ ∈WQN∗ . Evidently, we have Γ∗ 0∗ Γ, so there exists ∆ ∈WQN∗ such that Γ∗ ⊆ ∆
and ∆ 0∗ Γ. Obviously, Γ ∩∆ = ∅. Thus RQN∗ is serial.

Let {Γ,∆1,∆2} ⊆ WQN∗ be such that Γ ∩∆1 = ∅ and Γ ∩∆2 = ∅. Notice that ∆1 and ∆
are closed under conjunction, while Γ is closed under disjunction by Proposition 3.14.

Claim: ∆1 ∪∆2 0∗ Γ, viz. QN∗ ∪∆1 ∪∆2 0 Γ.

For otherwise Ψ1 ∧Ψ2 `∗ Φ for some Ψ1 ∈ ∆1, Ψ2 ∈ ∆2 and Φ ∈ Γ. Evidently, the analogue
of Proposition 3.14 for `∗ holds; therefore Ψ1 ∧ Ψ2 is in Γ, i.e. ¬ (Ψ1 ∧Ψ2) ∈ Γ. Consequently
¬Ψ1 ∨ ¬Ψ2 ∈ Γ by N∗, and thus ¬Ψ1 ∈ Γ or ¬Ψ2 ∈ Γ, i.e. Ψ1 ∈ Γ or Ψ2 ∈ Γ, a contradiction.

Since ∆1 ∪∆2 0∗ Γ, there is ∆ ∈ WQN∗ such that ∆1 ∪∆2 ⊆ ∆ and ∆ 0∗ Γ. Obviously, we
have ∆1 ⊆ ∆, ∆2 ⊆ ∆ and Γ ∩∆ = ∅.

Naturally, by the canonical model for QN∗ we mean MQN∗ = 〈WQN∗ ,A QN∗〉 where A QN∗ is
the restriction of A QN to WQN∗ . Clearly, MQN∗ is a QN∗-model, and furthermore, the Canoni-
cal Model Lemma for QN implies that for QN∗.

Theorem 5.5 (Strong Completeness). For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `∗ ∆ ⇐⇒ Γ �∗ ∆.

Proof. This is perfectly analogous to the proof of Theorem 3.16.

It was shown in [14] that the {∧,∨,→,−}-fragment of N∗ is precisely intuitionistic proposi-
tional logic. This generalises to QN∗, of course.

Proposition 5.6. The {∧,∨,→,−}-fragment of QN∗ is precisely intuitionistic predicate logic.

Proof. The argument for Proposition 4.5 applies.

6 A useful extension QN] of QN∗

Although QN∗ and N∗ share certain nice properties, it seems that QN∗, unlike N∗, does not ha-
ve a Routley-style semantics.14 So we are going to modify QN∗ appropriately.

6.1 A Hilbert-type calculus

We define the logic QN] to be QN∗ plus the following axiom schemata:

N1]. ∀x¬Φ→ ¬∃xΦ;

N2]. ¬∀xΦ→ ∃x¬Φ;

CD. ∀x (Φ ∨Ψ)→ Φ ∨ ∀xΨ for x not free in Φ.

14Roughly, for the Routley-style canonical model construction to work, we need Γ∗, as defined in Section 5, to
be a prime theory, provided Γ is itself a prime theory. This is true for N∗ (see [14]) but, in general, not for QN∗.
Thus we are lead to considering quantified analogues of De Morgan’s laws.
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Let `] denote the derivability relation of QN]. Notice that the converses of N1] and N2] are de-
rivable already in QN (even without N), as can be readily verified.

Intuitively, QN] has both modal and intuitionistic features. In this context we may think of
N1] and N2] as playing the role of Barcan’s formula. Further, CD may be viewed as an analogue
to Barcan’s formula in intuitionistic predicate logic with constant domains.

At the same time, it should be remarked that the ‘constant domain condition’ for R implies
that for 6, provided R is serial. More precisely, the following holds.

Proposition 6.1. Let M = 〈W,A 〉 be a QN◦σ-model such that for all u, v ∈W ,

u R v =⇒ Au = Av.

Then for any u, v ∈W , u 6 v implies Au = Av.

Proof. Assume u 6 v. Since R is serial, there exists v′ ∈W such that vRv′. Remembering that
6 ◦R ⊆ R ◦ 6−1, it follows that for some u′ ∈W we have uRu′ and v′ 6 u′. Hence

Au ⊆ Av = Av′ ⊆ Au′ = Au,

and therefore Au = Av as desired.

Naturally, we aim at developing an elegant constant domain semantics for QN]. Henceforth
we shall assume that σ is at most countable.15

6.2 A possible world semantics

Similarly to [1], call W a ∗-frame iff for each w ∈W , R (w) has a greatest element with respect
to 6. Clearly, ∗-frames are special. Next, observe that for every QNσ-model M = 〈W,A 〉 with
W a ∗-frame,

M, w 
 ¬Ψ ⇐⇒ M, ŵ 1 Ψ where ŵ is the greatest element of R (w).

This leads to a Routley-style semantics for QN]-extensions (cf. [16]). More precisely, similarly to
[1], by a Routley frame we mean a triple W = 〈W,6, ∗〉 where:

� W is a non-empty set;

� 6 is a preordering on W ;

� ∗ is an anti-monotone function from W to W .

Obviously, since ∗ is a binary relation on W , it may be viewed as an accessibility relation. And
further, we readily verify that

6 ◦ ∗ ⊆ ∗ ◦ 6−1.

Hence any Routley frame turns out to be a ∗-frame.16 On the other hand, with each ∗-frame W
= 〈W,6, R〉 we can associate the Routley frame W∗ = 〈W,6, ∗〉 given by

w∗ := the greatest element of R (w).

If M = 〈W,A 〉 is a QNσ-model with W a ∗-frame, we write M∗ for 〈W∗,A 〉.
15The point is that canonical model lemmas for constant domain semantics require analogues of [10, Theorem

14.2] and [6, Lemma 7.2.3], whose proofs rely on the countability of σ.
16Notice, however, that in [1, 14] all frames for N∗ are assumed to be condensed — but then a Routley frame

for N∗ is not, in general, a frame for N∗.
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Proposition 6.2. For every QNσ-model M = 〈W,A 〉 with W a ∗-frame, w ∈W and Aw-sen-
tence Φ,

M, w 
 Φ ⇐⇒ M∗, w 
 Φ.

Proof. An easy induction on the complexity of Φ.

Thus, in terms of validity, it makes no difference whether our semantics for QN] is based on
∗-frames or Routley frames. We choose the latter. Call M = 〈W,A 〉 a QN]σ-model iff:

� Au = Av for all u, v ∈W ;

� W is a Routley frame.

In other words, QN]σ-models are ‘constant domain’ models for QNσ which are based on Routley
frames. If M = 〈W,A 〉 is a QN]σ-model, we take

A :=
⋂
w∈W

Aw

— then A = Aw for each w ∈ W , of course. Let �] denote the relativisation of � to the class of
QN]σ-models.

6.3 Soundness and completeness

As usual, we quickly obtain:

Theorem 6.3. For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `] ∆ =⇒ Γ �] ∆.

Proof. Clearly, it suffices to prove that for any axiom Φ of the type N1], N2] or CD we get �] Φ.
Now consider a QN]σ-model M = 〈W,A 〉.

Let w ∈ W , and assume w 
 ∀x¬Φ. So in particular, for each a ∈ A we have w∗ 1 Φ (x/a).
Thus w∗ 1 ∃xΦ, i.e. w 
 ¬∃xΦ.

Let w ∈W , and assume w 
 ¬∀xΦ, i.e. w∗ 1 ∀xΦ. There exist u ∈W and a ∈ A such that
w∗ 6 u and u 1 Φ (x/a). Evidently, w∗ 1 Φ (x/a), i.e. w 
 ¬Φ (x/a). Hence w 
 ∃x¬Φ.

For CD one can argue as in intuitionistic predicate logic with constant domains.

For the rest of this section, S? will denote a fixed countable set; we shall write σ? instead of
σS? . Naturally, strongly prime σ?-theories over QN]σ? are simply those that contain QN]σ? .

Next, we shall apply the canonical model construction to QN]σ by extracting an appropriate
constant domain submodel of MQN∗σ . The subscript σ will often be dropped. Define

WQN]σ := the collection of all strongly prime σ?-theories over QN]σ? .

The following can be proved exactly as in intuitionistic predicate logic with constant domains
— see [6, Lemma 7.2.3], which in turn is inspired by [10, Theorem 14.2] that deals with classical
predicate modal logic.

Lemma 6.4. Let Γ be a strongly prime σ-theory. Suppose Φ ∈ Sentσ and Ψ ∈ Formσ are such
that Γ ∪ {Φ} 0 Ψ. Then there exists a strongly prime σ-theory Γ′ ⊇ Γ ∪ {Φ} such that Γ′ 0 Ψ.
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Recall that Γ∗ denotes {Φ ∈ Sent | ¬Φ 6∈ Γ}. And WQN] is closed under this operation:

Proposition 6.5. Γ∗ ∈WQN] for all Γ ∈WQN] .

Proof. Let Γ be a strongly prime σ?-theory over QN]σ? .

Replacing `∗ by `] in the proof of Proposition 5.3, we see already that Γ∗ does not coincide
with Sent, is closed under `], and has the disjunction property.

Assume ∃xΦ ∈ Γ∗, i.e. ¬∃xΦ 6∈ Γ. So we have ∀x¬Φ 6∈ Γ by N1]. Hence there is a constant
symbol c such that ¬Φ (x/c) 6∈ Γ, i.e. Φ (x/c) ∈ Γ∗.

Assume Φ (x/c) ∈ Γ∗ for all constant symbols c, i.e. ¬Φ (x/c) 6∈ Γ for each c. Hence we have
∃x¬Φ 6∈ Γ. So ¬∀xΦ 6∈ Γ by N2], i.e. ∀xΦ ∈ Γ∗.

In particular, it follows that for every Γ ∈WQN] ,

Γ∗ = the greatest element of {∆ ∈WQN] | Γ ∩∆ = ∅}

(with respect to inclusion). Consider the function ∗QN] from WQN] to WQN] given by

∗QN] (Γ) := Γ∗.

By the canonical frame for QN] we mean WQN] = 〈WQN] ,6QN] , ∗QN]〉 where

6QN] :=
{

(Γ1,Γ2) ∈WQN] ×WQN] | Γ1 ⊆ Γ2

}
,

as usual. Clearly, WQN] is a Routley frame. Finally, by the canonical model for QN] we mean

MQN] = 〈WQN] ,A QN]〉

where A QN] is the restriction of A QN∗ to WQN] . Note that MQN] is a QN]-model with domain
Constσ? .17 For convenience we write C instead of Constσ? below.

Lemma 6.6 (Canonical Model Lemma). For any Γ ∈WQN] and C-sentence Φ,

MQN] ,Γ 
 Φ ⇐⇒ Φ ∈ Γ.

Proof. By induction on the complexity of Φ.

In the case where Φ is atomic the result is immediate.

Suppose Φ = ¬Ψ. Then we have

¬Ψ ∈ Γ ⇐⇒ Ψ 6∈ Γ∗ ⇐⇒ MQN] ,Γ∗ 1 Ψ ⇐⇒ MQN] ,Γ 
 ¬Ψ

(here the second equivalence is justified by the inductive hypothesis).

In the other cases one can argue as in intuitionistic predicate logic with constant domains;

these do not involve ∗QN] . In particular, Lemma 6.4 is used to show that:

MQN] ,Γ 
 Ψ→ Θ =⇒ Ψ→ Θ ∈ Γ.

The crucial point here is that applying Lemma 6.4 does not require adding new constants.

17Of course, Const (Γ) = Constσ? for any strongly prime σ?-theory Γ over QN]σ? .
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This leads us to:

Theorem 6.7 (Strong Completeness). For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `] ∆ ⇐⇒ Γ �] ∆.

Proof. =⇒ This is Theorem 6.3.

⇐= Assume Γ 0] ∆. Fix an admissible S ⊆ S? of cardinality ℵ0; let λ be some one-to-one
function from Var onto {s | s ∈ S}, and take

∆′ := {λΨ | Ψ ∈ ∆}.

Then Γ 0] ∆′. By Corollary 3.13, there is Γ′ ∈WQN] such that Γ ⊆ Γ′ and Γ′ 0] ∆′. Evidently,

λ can be viewed as a ground C-substitution. By Lemma 6.6, MQN] ,Γ′ 
 Φ for all Φ ∈ Γ, while

MQN] ,Γ′ 1 λΨ for all Ψ ∈ ∆. Consequently Γ 2] ∆.

Finally, the analogue of Proposition 5.6 holds.

Proposition 6.8. The {∧,∨,→,−}-fragment of QN] is precisely intuitionistic predicate logic
with constant domains.

Proof. Let M = 〈W,A 〉 be a QN]σ-model. Then for all w ∈W ,

M, w 
 ⊥ ⇐⇒ M, w∗ 1 > ⇐⇒ 0 6= 0.

Hence the result follows.

7 Concerning Leitgeb’s quantified Hype

In [12], a certain system of ‘hyperintensional’ logic is advocated.18 Denote by Hype and QHype
its propositional and quantified versions respectively. S. P. Odintsov has recently observed that,
in effect, Hype coincides with the logic obtained from N∗ by adding the laws of double negation
introduction and elimination. This leads to a Routley-style semantics for Hype which is simpler
than the one suggested by Leitgeb. See [15] for further discussion.

Still, the application to semantic paradoxes given in [12] requires QHype. Note that Leitgeb
provides only a rough sketch of the weak completeness proof for QHype, which refers to [9] and
[17] extensively (filling the gaps is then left to the reader). I shall give a self-contained proof of
the strong completeness of QHype with respect to a suitable Routley-style semantics.

7.1 A Hilbert-type calculus and its variations

We define the logic QN• to be QN plus the following axiom schemata:

N1•. Φ→ ¬¬Φ;

N2•. ¬¬Φ→ Φ.

Let `• denote the derivability relation of QN•. We shall see shortly that QN• extends QN] and
eventually coincides with Leitgeb’s QHype.

Proposition 7.1. N is derivable from I1–I2, C1–C2, D3 and N1• using MP and CR.

18Whether this system should really be called ‘hyperintensional’ is a matter of dispute; cf. [15].
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Proof. We reason as follows:

1. ¬Φ ∧ ¬Ψ→ ¬Φ C1

2. ¬¬Φ→ ¬ (¬Φ ∧ ¬Ψ) from 1 using CR

3. Φ→ ¬ (¬Φ ∧ ¬Ψ) from N1•, 2
4. ¬Φ ∧ ¬Ψ→ ¬Ψ C2

5. ¬¬Ψ→ ¬ (¬Φ ∧ ¬Ψ) from 4 using CR

6. Ψ→ ¬ (¬Φ ∧ ¬Ψ) from N1•, 5
7. Φ ∨Ψ→ ¬ (¬Φ ∧ ¬Ψ) from 3, 6, D3
8. ¬¬ (¬Φ ∧ ¬Ψ)→ ¬ (Φ ∨Ψ) from 7 using CR

9. (¬Φ ∧ ¬Ψ)→ ¬ (Φ ∨Ψ) from N1•, 8.

This line of reasoning implicitly involves I1–I2 and MP, of course.

Thus N turns out to be redundant in QN•.

Proposition 7.2. N1◦, N2◦ and N∗ are derivable in QN•.

Proof. For N1◦, N2◦ and N∗ we argue as follows:

1. > positive intuitionistic logic
2. ¬Ψ→ > positive intuitionistic logic
3. ¬> → ¬¬Ψ from 2 using CR

4. ¬> → Ψ from 3, N2•

1. > positive intuitionistic logic
2. > → ¬¬> N1•

3. ¬¬> from 1, 2

1. ¬Φ→ ¬Φ ∨ ¬Ψ D1

2. ¬ (¬Φ ∨ ¬Ψ)→ ¬¬Φ from 1 using CR

3. ¬ (¬Φ ∨ ¬Ψ)→ Φ from 2, N2•

4. ¬Ψ→ ¬Φ ∨ ¬Ψ D2

5. ¬ (¬Φ ∨ ¬Ψ)→ ¬¬Ψ from 4 using CR

6. ¬ (¬Φ ∨ ¬Ψ)→ Ψ from 5, N2•

7. ¬ (¬Φ ∨ ¬Ψ)→ Φ ∧Ψ from 3, 6, C3
8. ¬ (Φ ∧Ψ)→ ¬¬ (¬Φ ∨ ¬Ψ) from 7 using CR

9. ¬ (Φ ∧Ψ)→ ¬Φ ∨ ¬Ψ from 8, N2•.

(Remember that any two formulas of the form Θ→ Θ are interchangeable over QN.)

Consequently QN• extends QN∗.

Proposition 7.3. N1] and N2] are derivable in QN•.
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Proof. For N1] and N2] we may reason as follows:

1. ∀x¬Φ→ ¬Φ Q1

2. ¬¬Φ→ ¬∀x¬Φ from 1 using CR

3. Φ→ ¬∀x¬Φ from N1•, 2
4. ∃xΦ→ ¬∀x¬Φ from 3 using BR2

5. ¬¬∀x¬Φ→ ¬∃xΦ from 4 using CR

6. ∀x¬Φ→ ¬∃xΦ from N1•, 5

1. ¬Φ→ ∃x¬Φ Q2

2. ¬∃x¬Φ→ ¬¬Φ from 1 using CR

3. ¬∃x¬Φ→ Φ from 2, N2•

4. ¬∃x¬Φ→ ∀xΦ from 3 using BR1

5. ¬∀xΦ→ ¬¬∃x¬Φ from 4 using CR

6. ¬∀xΦ→ ∃x¬Φ from 5, N2•.

(Clearly, N1]–N2] can also be derived from their converses, once N1•–N2• are available.)

This immediately implies:

Corollary 7.4. QHype (as presented in [12]) and QN• coincide.

Leitgeb’s axiomatisation is not ‘minimal’, and includes a number of redundant schemata (in
particular, it assumes not only N1•–N2• but also all de Morgan’s laws and N2]); still, it leads to
the same logic. From now on we shall use QHype and QN• interchangeably.

Yet another simple fact about QHype is worth mentioning here:

Proposition 7.5 (see [12]). CD is derivable in QHype.

Hence QHype (QN•) extends QN] as well.

7.2 A Routley-style semantics

Call a Routley frame W = 〈W,6, ∗〉 involutive iff w∗∗ = w for each w ∈W . Define QN•σ-models
to be constant domain models for QNσ which are based on involutive Routley frames, i.e. these
are precisely QN]σ-models whose underlying frames are involutive. Let �• be the relativisation
of � to the class of QN•σ-models.

7.3 Soundness and completeness

We immediately get:

Theorem 7.6. For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `• ∆ =⇒ Γ �• ∆.

Proof. Clearly, for any axiom Φ of the type N1• or N2• we have �• Φ. So the result follows.

Now the canonical frame for QN•, denoted WQN• = 〈WQN• ,6QN• , ∗QN•〉, is the subframe of

WQN] generated by the worlds containing QN•.

Proposition 7.7. WQN• is involutive.
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Proof. Let Γ ∈WQN• . Obviously, for any Φ ∈ Sent,

Φ ∈ Γ∗∗ ⇐⇒ ¬Φ 6∈ Γ∗ ⇐⇒ ¬¬Φ ∈ Γ ⇐⇒ Φ ∈ Γ.

Hence Γ∗∗ coincides with Γ.

Naturally, by the canonical model for QN• we mean MQN• = 〈WQN• ,A QN•〉 where A QN• is

the restriction of A QN] to WQN• . Clearly, MQN• is a QN•-model, and moreover, the Canonical
Model Lemma for QN] implies that for QN•.

Theorem 7.8 (Strong Completeness). For any Γ ⊆ Sentσ and ∆ v Formσ,

Γ `• ∆ ⇐⇒ Γ �• ∆.

Proof. This is perfectly analogous to the proof of Theorem 6.7.

In a nutshell, QHype has a nice Routley-style semantics, with respect to which it is strongly
complete. The proposed semantics looks much simpler than the one provided in [12].

Not surprisingly, the analogue of Proposition 6.8 holds.

Proposition 7.9 (see [12]). The {∧,∨,→,−}-fragment of QN• is precisely intuitionistic predi-
cate logic with constant domains.

Proof. The argument for Proposition 6.8 applies.

8 On the constructive properties of ∨ and ∃
In [12], Leitgeb mistakenly claimed that Hype has the disjunction property, but his argument is
flawed; cf. [15, 5]. In this section we shall briefly discuss related issues.

8.1 Disjunction

It was observed in [5, Proposition 6] that N∗ — and hence QN∗ — does not have the disjunction
property. More precisely, ¬p ∨ ¬ (−q ∧ (p→ q)) belongs to N∗, but neither of its disjuncts does.
To give a simpler counterexample, consider the following scheme:

WEM. ¬Φ ∨ ¬−Φ.

Here ‘WEM’ stands for ‘weak excluded middle’.

Proposition 8.1 (cf. [15]). WEM is derivable in QN∗.

Proof. We argue as follows:

1. Φ ∧ −Φ→ ⊥ positive intuitionistic logic
2. ¬⊥ → ¬ (Φ ∧ −Φ) from 1 using CR

3. ¬ (Φ ∧ −Φ) from N2◦, 2
4. ¬Φ ∨ ¬−Φ from 3, N∗.

(Notice that the argument involves no quantifier axioms or rules.)

Call a QN∗-extension subclassical iff it is a subset of classical predicate logic.

Corollary 8.2. No subclassical QN∗-extension has the disjunction property.
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Proof. Let L be a subclassical QN∗-extension. Obviously, there is a formula Φ such that neither
¬Φ nor ¬−Φ is in L. However, ¬Φ ∨ ¬−Φ belongs to L.

Using the soundness theorems, it is easy to verify semantically that QN∗, QN] and QN• are
subclassical. So neither of them has the disjunction property. The same applies to their propo-
sitional versions, of course.

8.2 Existential quantifier

The existential property is a bit more tricky. We assume, for simplicity, that σ contains exactly
two constant symbols, 0 and 1. Now consider the following scheme:

WCP. ¬− (Φ (x/0) ∧ Φ (x/1)) ∨ ∃x¬Φ.

Here ‘WCP’ stands for ‘weak choice principle’.

Proposition 8.3. WCP is derivable in QN∗.

Proof. We shall write Φ (0) and Φ (1) for Φ (x/0) and Φ (x/1) respectively. Take

Φ? := ¬− (Φ (0) ∧ Φ (1)) ∨ ∃x¬Φ.

We reason as follows:

1. ¬Φ (0) ∨ ¬Φ (1)→ ∃x¬Φ predicate intuitionistic logic
2. ¬ (Φ (0) ∧ Φ (1))→ ∃x¬Φ from N∗, 1
3. ¬ (Φ (0) ∧ Φ (1)) ∨ ¬− (Φ (0) ∧ Φ (1))→ Φ? 2, positive intuitionistic logic
4. Φ? from WEM, 3.

(Intuitively, if not ¬− (Φ (0) ∧ Φ (1)), then ¬Φ (0) or ¬Φ (1), and therefore ∃x¬Φ.)

Corollary 8.4. No subclassical QN∗-extension has the existential property.

Proof. Let L be a subclassical QN∗-extension. Obviously, there is a formula Φ (x) (with exactly
one free variable) such that

¬− (Φ (0) ∧ Φ (1)) ∨ ¬Φ (0) and ¬− (Φ (0) ∧ Φ (1)) ∨ ¬Φ (1)

are not in L. On the other hand, intuitionistic predicate logic proves

Ψ ∨ ∃xΘ→ ∃x (Ψ ∨Θ)

for x not free in Φ. Consequently, ∃x (¬− (Φ (0) ∧ Φ (1)) ∨ ¬Φ (x)) belongs to L.

In particular, neither of QN∗, QN] and QN• has the existential property.

Contraclassical logics, i.e. those which are not subclassical, are somewhat more complicated.
Still, it seems unlikely that a reasonable contraclassical QN∗-extension will have the disjunction
property or the existential property. On the other hand, simple semantical arguments — which
look very much like in intuitionistic predicate logic — show that QN and QN◦ do have both the
disjunction property and the existential property.
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9 Final comments

The technique developed in this article can be applied to other predicate logics. Here is a brief
description of some directions that might profitably be explored.

� Naturally, since N plays a key role in studying propositional intuitionistic modal logics, it
would be interesting to investigate predicate versions of such logics.

� It may be reasonable to develop predicate versions of the logics presented in [11].

� It will be useful to introduce and study sequent systems for QN and its extensions — this
should help us analyse some metamathematical properties.

� One may consider various results on intuitionistic predicate logic (Harrop’s theorems, the
Curry–Howard correspondence, etc.) and try to extend them to certain QN-extensions in
a suitable way.

� We could also try to employ QN∗-extensions to provide a suitable framework for studying
first-order logic programs with negation; compare this to [1].

On the linguistic side, if we want to study negation as used in natural language, and focus our
attention on its modal aspects, this should be done in a predicate setting. Still, all these things
fall beyond the scope of the present article, and are the subject of future work.
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