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Abstract

This paper collects some observations about Došen’s logic N, where negation is treated
as a modal operator, and its extensions. We shall see what happens when we add the con-
traposition axiom to several important extensions of N, show that certain extensions of N
are canonical, and also revisit the method of filtration.
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1 Introduction

Došen’s logic N, proposed in [3], enriches the positive fragment of intuitionistic logic by adding
a negative modality, which is weaker than the negation of Johansson’s minimal logic.1 Among
the interesting extensions of N are the logics N∗ and Hype. The former was introduced in [2] in
the course of developing a framework for the study of logic programs with negation. The latter
has been advocated in [6] as a system suitable for dealing with ‘hyperintensional’ contexts, but
was first described in [7]; the reader may consult [8] for further discussion. Following [11], we
shall write N• instead of Hype. Note that N• extends N∗.

While the system for N employs the contraposition rule, the corresponding scheme

(φ→ ψ)→ (¬ψ → ¬φ)

cannot be derived even in N•. In Section 3 we shall see what happens when we add the above
scheme to some important extensions of N.2 In Section 4 we shall prove that certain extensions
of N — which are obtained by adding various schemes involved in the definitions of N∗ and N•

— are canonical. In Section 5 we shall revisit the method of filtration, which was used in [4] to
establish the decidability of N and N∗. This will lead to further decidability results.

It should be noted that these remarks are inspired by the work of K. Došen and that of S.
Odintsov, and are intended to complement [3], [9], [4] and [8]. The technique used in the paper
is quite simple, but the results may be of interest to those working in non-classical logics.

2 Preliminaries

Fix once and for all a countable set Prop of propositional variables. The syntax of N is exactly
the same as that of intuitionistic logic; so the connective symbols are →, ∧, ∨ and ¬. However,
one should bear in mind that

in the semantics of N, ¬ will be interpreted as a negative modal operator, and thus
many intuitionistic principles involving ¬ will not be valid.

Denote by Form the collection of all formulas — i.e. the set of all expressions that can be built
up from Prop using the connective symbols. We treat ↔ as defined in the obvious way, viz.

φ↔ ψ := (φ→ ψ) ∧ (φ→ ψ).

For convenience, when concerned only with non-empty sets of formulas, we shall abbreviate the
condition ‘∆ 6= ∅ and ∆ ⊆ Form’ as ∆ v Form.

2.1 The logics N, N◦, N∗ and N•

The Hilbert-type system for N was described in [3]. It employs the following axiom schemes:

1For information about quantified versions of logics containing N, the reader may consult [11].
2The writing of this section has been partially motivated by a question of Dick de Jongh (private communi-

cation): he asked about extending N by adding the scheme

(φ↔ ψ)→ (¬φ↔ ¬ψ) (?)

— which is the same as adding ¬φ ∧ ¬ψ → ¬ (φ ∨ ψ) to the system of ‘subminimal logic’ studied in [1] (see also
[5]). Among other things, we shall derive the contraposition scheme from (?) over N.
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I1. φ→ (ψ → φ);

I2. (φ→ (ψ → θ))→ ((φ→ ψ)→ (φ→ θ));

C1. φ ∧ ψ → φ;

C2. φ ∧ ψ → ψ;

C3. φ→ (ψ → φ ∧ ψ);

D1. φ→ φ ∨ ψ;

D2. ψ → φ ∨ ψ;

D3. (φ→ θ)→ ((ψ → θ)→ (φ ∨ ψ → θ));

N. ¬φ ∧ ¬ψ → ¬ (φ ∨ ψ).

Thus we have the ‘positive’ axioms of intuitionistic logic plus all instances of N. It also employs
two inference rules:

MP. modus ponens, i.e.

φ φ→ ψ
;

ψ

CR. the contraposition rule, which is rendered as

φ→ ψ .
¬ψ → ¬φ

Note that if we think of ¬ as an impossibility operator, then CR can be viewed as a modal rule.
Clearly, ¬ is weaker than intuitionistic negation, and even minimal negation.

Now let N denote the least set of formulas containing the axioms of our calculus and closed
under its rules of inference. For each Γ ⊆ Form, take

Disj (Γ) := {φ0 ∨ . . . ∨ φn | n ∈ N and φ0, . . . , φn ∈ Γ}.3

Given Γ ⊆ Form and ∆ v Form, we write Γ ` ∆ iff some element of Disj (∆) can be obtained
from elements of Γ ∪ N by means of MP. As may be expected, φ ` ∆ and Γ ` φ abbreviate {φ}
` ∆ and Γ ` {ψ} respectively. Exactly as in intuitionistic logic, one can prove:

Theorem 2.1 (see [3]).
For any Γ ⊆ Form and φ, ψ ∈ Form,

Γ ∪ {φ} ` ψ ⇐⇒ Γ ` φ→ ψ.

Here is another simple but useful observation.

3When n = 0, we have φ0 ∨ . . . ∨ φn = φ0. Thus Disj (Γ) contains non-empty disjunctions only.
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Theorem 2.2 (see [3]).
Let {φ, ψ, ψ′} ⊆ Form, and suppose that φ′ is obtained from φ by replacing some occurrence of
ψ by ψ′. Then ` ψ ↔ ψ′ implies ` φ↔ φ′.

Proof. By induction on the complexity of φ.

The case where φ ∈ Prop is trivial.

Suppose φ = ¬θ. The result then follows by the inductive hypothesis and CR.

The other cases can be handled as in intuitionistic logic.

Evidently, for any φ, ψ ∈ Form we have ` (φ→ φ)↔ (ψ → ψ); thus by Theorem 2.2, φ→ φ
and ψ → ψ are practically interchangeable. Denote

> := φ◦ → φ◦ and ⊥ := ¬>

where φ◦ is a fixed formula. We shall occasionally abbreviate φ → ⊥ to −φ. One may think of
− as intuitionistic negation provided that ⊥ behaves as the falsum.

In this article by a (normal) logic we mean a superset of N closed under MP, CR and substi-
tutions. Given a logic L, we define

Γ `L ∆ :⇐⇒ L ∪ Γ ` ∆.

Thus Theorems 2.1 and 2.2 generalise readily to extensions of N. If L is a logic and S1, . . . , Sn
are formula schemes, we write L+ {S1, . . . Sn} for the least logic containing L and all instances
of S1, . . . , Sn. Here are examples of extra schemes:

N1◦. ¬ (φ→ φ)→ ψ;

N2◦. ¬¬ (φ→ φ);

N∗. ¬ (φ ∧ ψ)→ ¬φ ∨ ¬ψ;

N1•. φ→ ¬¬φ;

N2•. ¬¬φ→ φ.

They can be used to define three important extensions of N:

N◦ := N + {N1◦, N2◦};
N∗ := N◦ + {N∗};
N• := N∗ + {N1•, N2•}.

It is known that N◦ is the least logic in which ⊥ behaves as the falsum; see [11]. Next, N∗ was
introduced in [2] and studied further in [9, 4]. Finally, N• has been advocated in [6], but it was
first described in [7]; consult [8] for discussion.4 Here are a few useful observations:

• the converses to N and N∗ are derivable in N, even without N;

• N, N1◦, N2◦ and N∗ are redundant — i.e. derivable from the other axioms — in N•.

4In [6], N• was presented in a slightly different language: > was treated as primitive, rather than defined. So
formally speaking, the system for N• as given above is a definitional variant of that in [6].
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See [11] for the details.

While the rule CR is obviously admissible in each extension of N, it is not derivable even in
N•, let alone N and N∗ — this can be shown using the corresponding possible world semantics;
see [9]. The same applies to the rule

φ↔ ψ .
¬ψ ↔ ¬φ

In other words, the following schemes are not derivable in N•:

C. (φ→ ψ)→ (¬ψ → ¬φ);

E. (φ↔ ψ)→ (¬ψ ↔ ¬φ).

Interestingly enough, C and E turn out to be equivalent, i.e. derivable from each other over the
basic logic N.

Proposition 2.3.
Let L be a logic. Then L+ {C} coincides with L+ {E}.

Proof. Clearly, it suffices to show that C is derivable in N + {E}. For convenience, let L denote
N + {E}. Observe that φ→ ψ `L ¬ψ → ¬φ:

1 φ→ ψ hypothesis

2 (φ→ ψ)→ ((φ ∨ ψ)↔ ψ) positive intuitionistic logic

3 (φ ∨ ψ)↔ ψ from 1, 2

4 ((φ ∨ ψ)↔ ψ)→ (¬ (φ ∨ ψ)↔ ¬ψ) E

5 ¬ (φ ∨ ψ)↔ ¬ψ from 3, 4

6 (¬φ ∧ ¬ψ)↔ ¬ (φ ∨ ψ) N

7 (¬φ ∧ ¬ψ)↔ ¬ψ from 6, 5

8 ((¬φ ∧ ¬ψ)↔ ¬ψ)→ (¬ψ → ¬φ) positive intuitionistic logic

9 ¬ψ → ¬φ from 7, 8.

By the deduction theorem for L, this gives us C.

One may wonder what happens if we add C to a given logic. Some natural examples will be
discussed in Section 3.

2.2 Došen-style semantics

As in [3], by a frame we mean a triple W = 〈W,6, R〉 where W is a non-empty set, 6 is a pre-
ordering on W , and R is a binary relation on W such that

6 ◦ R ⊆ R ◦ 6−1.5

Given W, we call ξ : Prop→ P (W ) a valuation in W iff for any p ∈ Prop and x, y ∈W ,

x ∈ ξ (p) and x 6 y =⇒ y ∈ ξ (p),

5Here ◦ and ·−1 denote the composition operation and the inverse operation respectively.
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i.e. the ξ (p)’s are upward closed. By a model we mean a pair M = 〈W, ξ〉 where W is a frame
and ξ is a valuation in W. Now M, x  φ is defined exactly as in intuitionistic logic, except for
the negation clause:

M, x  ¬ψ :⇐⇒ M, y 1 ψ for all y ∈ R (x).6

When there is no ambiguity, we shall drop M and write x  φ instead of M, x  φ. Naturally,
M, x  φ is read φ is true at x in M. Also define:

• M  φ iff M, x  φ for all x ∈W ;

• W  φ iff M  φ for all models M based on W.

These are read φ is true in M and φ is valid in W respectively.

Lemma 2.4 (see [3]).
Let M be a model. Then for any φ ∈ Form and x, y ∈W ,

M, x  φ and x 6 y =⇒ M, y  φ.

More informally, it means that  is intuitionistically hereditary.

As in modal logic, some of the formulas correspond to frame properties. For instance, ⊥ is
valid in W iff R = ∅. For a more interesting example, consider the principle of weak excluded
middle, which can be represented as the formula scheme

WEM. ¬φ ∨ ¬¬φ.

As was shown in [3], it corresponds to a rather complicated property:

W  ¬p ∨ ¬¬p ⇐⇒ ∀x∀y ∀z (R (x, y) & R (x, z)⇒ ∃u (R (y, u) & z 6 u)).

Here is yet another example.

Proposition 2.5.
For every frame W,

W  ¬ (p ∧ q)→ ¬p ∨ ¬q ⇐⇒
∀x∀y ∀z (R (x, y) & R (x, z)⇒ ∃u (R (x, u) & y 6 u & z 6 u)).

Thus the scheme N∗ corresponds to the property on the right-hand side.

Proof. For convenience, denote by (?) the property on the right-hand side.

⇐= Assume (?) holds. Let M be a model based on W. It suffices to show that for every
x ∈W ,

M, x  ¬ (p ∧ q) =⇒ M, x  ¬p or M, x  ¬q.

Suppose x 1 ¬p and x 1 ¬q. So there exist y, z ∈ R (x) such that

y  p and z  q

6Here R (u) denotes the image of {u} under R, i.e. {v ∈W | uRv}.
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Then by (?), there exists u ∈ R (x) such that y 6 u and z 6 u. Consequently, u  p and u  q,
i.e. u  p ∧ q. Hence x 1 ¬ (p ∧ q).

=⇒ Assume (?) fails. So there exist x ∈ W and y, z ∈ R (x) such that for every u ∈ R (x)
we have y 66 u or z 66 u. Consider a model M based on W such that

ξ (p) := {u ∈W | y 6 u} and ξ (q) := {u ∈W | z 6 u}.

It is straightforward to check that M, x  ¬ (p ∧ q) but M, x 1 ¬p and M, x 1 ¬q.

For more examples, see the table below.

Property Scheme Reference
∀x∃y R (x, y) N1◦ [3]
∀x (∃y R (y, x)⇒ ∃z R (x, z)) N2◦ [3]
∀x∀y ∀z (R (x, y) & R (x, z)⇒ ∃u (R (x, u) & y 6 u & z 6 u)) N∗ This article
∀x∀y (∃u (R (x, u) & y 6 u)⇒ ∃u (R (y, u) & x 6 u)) N1• [3]
∀x∃y (R (x, y) & ∀z (R (y, z)→ z 6 x)) N2• [3]
∀x∀y (R (x, y)⇒ ∃z (R (x, z) & x 6 z & y 6 z)) C [3]

Table 1: Properties vs. Schemes.

As was shown in [3], the canonical model method can be adapted to N and its extensions.
Let L be a logic. Call Γ ⊆ Form a prime L-theory iff:

i. {φ ∈ Form | Γ `L φ} ⊆ Γ;

ii. for every φ ∨ ψ ∈ Γ we have φ ∈ Γ or ψ ∈ Γ.

Thus (i) and (ii) say that Γ is closed under `L and has the disjunction property. The following
is proved in the usual way.

Lemma 2.6 (see [3]).
Let L be a logic. Suppose Γ ⊆ Form and ∆ v Form are such that Γ 0L ∆. Then there exists a
prime L-theory Γ′ ⊇ Γ such that Γ′ 0L ∆.

Given Γ ⊆ Form, we write Γ for {φ | ¬φ ∈ Γ}.

Proposition 2.7 (see [3, 11]).
Let Γ ⊆ Form be such that {φ ∈ Form | Γ ` φ} ⊆ Γ and Γ 6= ∅. Then:

i. {φ ∈ Form | φ ` Γ} ⊆ Γ;

ii. for any φ, ψ ∈ Γ we have φ ∨ ψ ∈ Γ.

Now take WL to be the collection of all prime L-theories. By the canonical frame for L we
mean the triple WL = 〈WL,6L, RL〉 where

6L :=
{

(Γ,∆) ∈WL ×WL | Γ ⊆ ∆
}

and

RL :=
{

(Γ,∆) ∈WL ×WL | Γ ∩∆ = ∅
}
.
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By the canonical model for L we mean the pair ML = 〈WL, ξL〉 where ξL is given by

ξL (p) :=
{

Γ ∈WL | p ∈ Γ
}
.

One readily verifies that WL is a frame, and ML is a model. Moreover,

6L ◦ RL ◦ 6−1 ⊆ RL.

Hence WL is strictily condensed, in the terminology of [3].7 In fact, we might limit ourselves to
strictly condensed frames if needed.

Lemma 2.8 (see [3]).
Let L be a logic. Then for any Γ ∈WL and φ ∈ Form,

ML,Γ  φ ⇐⇒ φ ∈ Γ.

Given Γ ⊆ Form and ∆ v Form, we write Γ � ∆ iff for any model M and w ∈W ,

M, w  φ for all φ ∈ Γ =⇒ M, w  ψ for some ψ ∈ ∆.

For each logic L, denote by �L the relativization of � to {W | W  L}.8 Further, call a logic L
canonical iff WL  L.

Theorem 2.9 (see [3]).
Let L be a canonical logic. Then for any Γ ⊆ Form and ∆ v Form,

Γ `L ∆ ⇐⇒ Γ �L ∆.

In particular, since N is canonical, ` coincides with �.

We conclude with two technical remarks.

I. In [3], Došen employed single-succedent derivability and semantical consequence relations
— this, in a sense, forced him to utilize Zorn’s lemma for the canonical model lemma. As
has been shown in [11], this is not essential.

II. Došen emphasized that Form should be treated as a prime theory in his canonical model
construction. In most cases this is not necessary; see [11]. In particular, if L contains at
least one negated formula, we may assume that all prime L-theories are non-trivial.

In view of (II), we shall adopt the convention that Form is a prime L-theory iff no negated for-
mula belongs to L. So if L contains some negated formulas, then each element of WL must be
non-trivial; otherwise Form is also an element of WL.

Next we turn to a more elegant semantics appropriate for logics containing N∗.

7There are several different but equivalent ways of defining this notion; see Definition 6 in [3] together with
the comments after it. In particular, for every frame W,

6 ◦ R ◦ 6−1 ⊆ R ⇐⇒ R ◦ 6−1 ⊆ R.

8Here W  L means that W  φ for all φ ∈ L.
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2.3 Routley-style semantics

Following [9], by a Routley frame we mean a triple W = 〈W,6, ∗〉 where W is a non-empty set,
6 is a preordering on W , and ∗ is an anti-monotone function from W to W . Obviously, ∗ may
be viewed as a binary relation on W , and moreover, it is easy to verify that

6 ◦ ∗ ⊆ ∗ ◦ 6−1.

So Routley frames are frames.9 Models based on Routley frames are called Routley models. By
definition, for any Routley model M, w ∈W and ψ ∈ Form,

M, x  ¬ψ ⇐⇒ M, x∗ 1 ψ

where x∗ stands for ∗ (x). This kind of semantics is suitable for N∗ and its extensions.

Given Γ ⊆ Form, denote Form \ Γ — i.e. {φ ∈ Form | ¬φ 6∈ Γ} — by Γ∗. Notice that if L is
an extension of N∗, then it contains some negated formulas, and hence all prime L-theories are
non-trivial by the above convention. The following is straightforward.

Proposition 2.10 (see [9]).
Let Γ be a prime L-theory, where L is an extension of N∗. Then Γ∗ is also a prime L-theory.

Let L be an extension of N∗. Observe that for every Γ ∈WL,

Γ∗ = the greatest element of {∆ ∈WL | Γ ∩∆ = ∅}

(with respect to inclusion). By the canonical Routley frame for L we mean

WL = 〈WL,6L, ∗L〉

where WL and 6L are as before, and ∗L maps each Γ in WL to Γ∗. By the canonical Routley
model for L we mean

ML = 〈WL, ξL〉

where ξL is defined in the usual way. Clearly, WL and ML are a Routley frame and a Routley
model respectively.

Lemma 2.11 (see [9]).
Let L be an extension of N∗. Then for any Γ ∈WL and φ ∈ Form,

ML,Γ  φ ⇐⇒ φ ∈ Γ.

For each extension L of N∗, define �∗L exactly as �L but with ‘frames’ replaced by ‘Routley
frames’. Further, call an extension L of N∗ Routley canonical iff WL  L.

Theorem 2.12 (see [9]).
Let L be a Routley canonical extension of N∗. Then for any Γ ⊆ Form and ∆ v Form,

Γ `L ∆ ⇐⇒ Γ �∗L ∆.

In particular, since N∗ is Routley canonical, `N∗ coincides with �∗N∗ .
9Semantically, the class of Routley frames plays the same role as the class of all frames W such that for each

w ∈W , R (w) has a greatest element with respect to 6; cf. [9].
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3 Adding the contraposition axiom

Naturally, one may wonder what happens when we add the scheme C — which is equivalent to
E by Proposition 2.3 — to a given logic, e.g. N◦, N∗ or N•. Here we focus on logics containing
at least one negated formula. As will become clear from what follows, this leads us to consider
logics that include N2◦.10 Note that N2◦ is semantically weaker than N1◦; see Table 1. We shall
write CL for classical logic, IL for intuitionistic logic, and JL for Johansson’s minimal logic.

Lemma 3.1.
N + {N2◦, E} coincides with JL, and hence includes N1•.11

Proof. For convenience, let L denote N + {N2◦, E}. Clearly, L ⊆ JL. For the other inclusion, it
suffices to show that

¬φ↔ (φ→ ¬ (φ→ φ))︸ ︷︷ ︸
−φ

is derivable in L. The implication from left to right can be obtained as follows:

1 φ→ ((φ→ φ)→ φ)
2 ((φ→ φ)→ φ)→ (¬φ→ ¬ (φ→ φ)) C (see Proposition 2.3)

3 φ→ (¬φ→ ¬ (φ→ φ)) from 1, 2

4 ¬φ→ (φ→ ¬ (φ→ φ)) from 3.

On the other hand, observe that φ→ ¬ (φ→ φ) `L ¬φ:

1 φ→ ¬ (φ→ φ) hypothesis

2 (φ→ ¬ (φ→ φ))→ (¬¬ (φ→ φ)→ ¬φ) C (see Proposition 2.3)

3 ¬¬ (φ→ φ)→ ¬φ from 1, 2

4 ¬¬ (φ→ φ) N2◦

5 ¬φ from 4, 3.

By the deduction theorem for L, this gives us the implication from right to left.

Before proceeding, a few observations from [11] are worth recalling here.

Proposition 3.2 (see [11]). i. N2◦ is derivable in N + {N1•}.

ii. N1◦ and N∗ are derivable in N + {N2•}.

So in particular, N2◦ is deductively weaker than N1•, which implies the following.

Corollary 3.3.
N + {N1•, E} coincides with JL.

Proof. Since N2◦ and N1• are derivable in N + {N1•} and JL respectively, we have

N + {N1•, E} = N + {N2◦, N1•, E} = JL + {N1•} = JL

(using Lemma 3.1 for the second equality).

10In particular, N + {E} will not be considered because of Proposition 3.4 below.
11In [3], Došen notes that JL coincides with N + {N1•, C}.
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Interestingly enough, N1◦ is stronger than N2◦ semantically but not deductively, as the next
result shows.

Proposition 3.4 (cf. [9]).
No formula beginning with ¬ can be derived in N + {N2•, E}. In particular, N2◦ is not derivable
in N + {N2•, E}.12

Proof. The analogous result for N + {N1◦, N∗} was proved in [9], using a ‘Kleene slash’, and the
same argument applies to N + {N2•, E}.

Finally, we turn to the extensions of N◦, N∗ and N• obtained by adding E.

Theorem 3.5. i. N◦ + {E} = IL.

ii. N∗ + {E} = IL + {WEM}.

iii. N• + {E} = CL.

Proof. i By Lemma 3.1, N◦ + {E} coincides with JL + {N1◦}, i.e. with IL.

ii By (i), N∗ + {E} coincides with IL + {N∗}. Thus it remains to show that N∗ and WEM are
equivalent over IL.13 Notice that WEM is easily derivable in IL + {N∗}:

1 ¬ (φ ∧ ¬φ) JL

2 ¬ (φ ∧ ¬φ)→ ¬φ ∨ ¬¬φ N∗

3 ¬φ ∨ ¬¬φ from 1, 2.

On the other hand, ¬φ ∨ ¬ψ can be derived from ¬ (φ ∧ ψ) in IL + {WEM} as follows:

1 ¬φ ∨ ¬¬φ WEM

2 ¬ψ ∨ ¬¬ψ WEM

3 (¬φ ∨ ¬¬φ) ∧ (¬ψ ∨ ¬¬ψ) from 1, 2

4 (¬φ ∧ ¬ψ) ∨ (¬φ ∧ ¬¬ψ) ∨ (¬¬φ ∧ ¬ψ) ∨ (¬¬φ ∧ ¬¬ψ) from 3

5 ¬φ ∧ ¬ψ → ¬φ ∨ ¬ψ
6 ¬φ ∧ ¬¬ψ → ¬φ ∨ ¬ψ
7 ¬¬φ ∧ ¬ψ → ¬φ ∨ ¬ψ
8 ¬ (φ ∧ ψ) hypothesis

9 ¬¬φ ∧ ¬¬ψ → ¬ (φ ∧ ψ) from 8

10 ¬¬φ ∧ ¬¬ψ → ¬¬ (φ ∧ ψ) JL

11 ¬¬φ ∧ ¬¬ψ → ¬ (φ ∧ ψ) ∧ ¬¬ (φ ∧ ψ) from 9, 10

12 ¬ (φ ∧ ψ) ∧ ¬¬ (φ ∧ ψ)→ ¬φ ∨ ¬ψ IL

13 ¬¬φ ∧ ¬¬ψ → ¬φ ∨ ¬ψ from 11, 12

14 ¬φ ∨ ¬ψ from 4, 5, 6, 7, 13.

By the deduction theorem for IL + {WEM}, this gives us N∗.

iii By (ii), N• + {E} coincides with IL + {N2•}, i.e. with CL.

12Bear in mind that N + {N2•, E} coincides with N + {N1◦, N∗, N2•, E}.
13In fact, it is straightforward to prove this using the possible world semantics for IL (see e.g. [10, Section 3]).

Here a syntactic proof is provided.
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4 Certain canonical extensions

Note that every canonical logic containing N1◦ must contain N2◦. So in particular, we have the
following negative result.

Proposition 4.1.
Let L be a logic between N + {N1◦} and N + {N2•, E}. Then L is not canonical.

Proof. For any frame W, if W  L, then W  N1◦ and therefore W  N2◦ (see Table 1). Thus
�L ¬¬ (p→ p). On the other hand, we have 0L ¬¬ (p→ p) by Proposition 3.4. Hence L is not
canonical by Theorem 2.9.

Obviously, N and N∗ are canonical and Routley canonical respectively. Also, one can check
that N◦ is canonical and N• is Routley canonical; cf. [11, 8]. Further examples can be obtained
by using so-called ‘canonical schemes’.

Let L be a logic and S be a scheme. Call S canonical over L iff WL′  S for every extension
L′ of L+ {S}. Similarly with ‘Routley canonical’ in place of ‘canonical’. For instance, since the
formulas of the form φ→ φ are valid in all frames, N2◦ turns out to be canonical over N.

For the purposes of the next proof note that if L includes N2◦, then some negated formulas
belong to L, and hence for every Γ ∈WL we have Γ 6= ∅.

Theorem 4.2.
N1◦, N∗, N1• and N2• are canonical over N + {N2◦}.

Proof. Let S be one of the schemes above, and let L be an extension of N + {N2◦, S}. We want
to show that WL has the property corresponding to S.

N1◦ Let Γ ∈ WL. We need to find ∆ ∈ WL such that Γ ∩∆ = ∅. It suffices to show that
0L Γ — because a suitable ∆ can then be obtained by applying Lemma 2.6. Now assume, by
way of contradiction, that `L Γ. So > `L Γ; thus > ∈ Γ by Proposition 2.7, i.e. ¬> ∈ Γ. Hence
we obtain Γ = Form (using N1◦), a contradiction.

N∗ Let Γ,∆,Σ ∈ WL be such that Γ ∩∆ = ∅ and Γ ∩ Σ = ∅. We need to find Π ∈ WL

such that
Γ ∩Π = ∅ and ∆ ∪ Σ ⊆ Π.

It suffices to show that ∆ ∪ Σ 0L Γ — because a suitable Π can then be obtained by applying
Lemma 2.6. Now assume, by way of contradiction, that ∆ ∪ Σ `L Γ. Since ∆ and Σ are closed
under conjunction, while Γ is closed under disjunction by Proposition 2.7, we have

{φ, ψ} `L θ for some φ ∈ ∆, ψ ∈ Σ and θ ∈ Γ.

So φ ∧ ψ → θ ∈ L. Therefore ¬θ → ¬ (φ ∧ ψ) ∈ L (by CR). This implies ¬ (φ ∧ ψ) ∈ Γ (since ¬θ
∈ Γ). Thus ¬φ ∨ ¬ψ ∈ Γ (using N∗), which gives ¬φ ∈ Γ or ¬ψ ∈ Γ, i.e. φ ∈ Γ or ψ ∈ Γ. Hence
we obtain Γ ∩∆ 6= ∅ or Γ ∩ Σ 6= ∅, a contradiction.

N1• Since the composition of RL and 6−1
L coincides with RL, it suffices to prove that RL

is symmetric. Let Γ,∆ ∈ WL be such that Γ ∩∆ = ∅. We need to show that ∆ ∩ Γ = ∅. This
is easy: if φ ∈ Γ, then ¬¬φ ∈ Γ (using N1•), i.e. ¬φ ∈ Γ, which implies ¬φ 6∈ ∆, i.e. φ 6∈ ∆.
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N2• Assume, by way of contradiction, that WL does not have the property corresponding
to N2•, i.e. there exists Γ ∈WL such that for every ∆ ∈WL,

Γ ∩∆ = ∅ =⇒
there exists Σ ∈WL such that

∆ ∩ Σ = ∅ and Σ 6⊆ Γ.

For each ∆ ∈WL such that Γ ∩∆ = ∅, choose Σ∆ ∈WL and φ∆ ∈ Form satisfying

∆ ∩ Σ∆ = ∅ and φ∆ ∈ Σ∆ \ Γ.

Take Π0 to be
{
¬φ∆ | ∆ ∈WL and Γ ∩∆ = ∅

}
. Observe that Π0 6= ∅:

Assume that Π0 = ∅, i.e. there exists no ∆ ∈ WL such that Γ ∩∆ = ∅. Then φ `L Γ for
all φ ∈ Form. So Γ = Form by Proposition 2.7. Hence we obtain Γ = Form (using N2•), a
contradiction.

Next, it is not hard to show that Π0 0L Γ:

Assume that Π0 `L Γ. So ¬φ∆0
∧ . . . ∧ ¬φ∆n

`L Γ for some ¬φ∆0
, . . . ,¬φ∆n

∈ Π0. Thus
¬φ∆0 ∧ . . . ∧ ¬φ∆n ∈ Γ by Proposition 2.7, i.e.

¬ (¬φ∆0
∧ . . . ∧ ¬φ∆n

) ∈ Γ.

From this we obtain ¬¬φ∆0
∨ . . . ∨ ¬¬φ∆n

∈ Γ (using N∗), and hence φ∆0
∨ . . . ∨ φ∆n

∈ Γ
(using N2•).14 Therefore one of φ∆0

, . . . , φ∆n
must be in Γ, a contradiction.

Finally, let Π ∈ WL be such that Π0 ⊆ Π and Π 0L Γ; the latter implies Γ ∩ Π = ∅, of course.
Then φΠ ∈ ΣΠ ⊆ Form \Π, which contradicts ¬φΠ ∈ Π0 ⊆ Π.

Corollary 4.3.
Let S ⊆ {N1◦, N∗, N1•, N2•}. Then (N ∪ {N2◦}) + S is canonical.

Proof. Immediate.

Theorem 4.4.
N1• and N2• are Routley canonical over N∗.

Proof. Let S be one of the schemes above, and let L be an extension of N∗ + {S}. We want to
show that WL has the property corresponding to S.

N1• It suffices to show that for any Γ ∈ WL we have Γ ⊆ Γ∗∗. This is easy: if φ ∈ Γ, then
¬¬φ ∈ Γ (using N1•), i.e. ¬φ 6∈ Γ∗, i.e. φ ∈ Γ∗∗.

N2• Similarly to N1•.

Corollary 4.5.
N∗ + {N1•}, N∗ + {N2•} and N• are Routley canonical.

Proof. Immediate.

14By Proposition 3.2, N∗ is derivable in L.
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5 The method of filtration revisited

The decidability of N and N∗ can be established using the method of filtration as presented in
[4, Section 4]. We are going to develop a somewhat more flexible approach to filtrations, which
will lead to further decidability results.

5.1 General filtrations

Fix a model M = 〈W, ξ〉. Let Φ ⊆ Form be closed under subformulas. Take

≡Φ :=
{

(x, y) ∈W 2 | for all φ ∈ Φ, M, x  φ iff M, y  φ
}
.

For every x ∈ W , denote by [x]Φ the equivalence class of x under ≡Φ. We shall often omit the
subscript Φ if it is clear from the context. By a Φ-filtration of M we mean a model

M′ = 〈〈WΦ,6
′, R′〉, ξΦ〉

where:

• WΦ is {[x] | x ∈W};

• 6′ is such that:

– for all x, y ∈W , if x 6 y, then [x] 6′ [y];

– for all x, y ∈W and φ ∈ Φ, if [x] 6′ [y] and M, x  φ, then M, y  φ;

• R′ is such that:

– for all x, y ∈W , if xRy, then [x]R′ [y];

– for all x, y ∈W and ¬φ ∈ Φ, if [x]R′ [y] and M, x  ¬φ, then M, y 1 φ;

• ξΦ is the function mapping each p ∈ Prop to {[x] | x ∈ ξ (p) and p ∈ Φ}.

Obviously, WΦ and ξΦ are both uniquely determined by M and Φ, unlike 6′ and R′. Define

6Φ := the transitive closure of {([x], [y]) | x 6 y},
RΦ := the composition of 6Φ, {([x], [y]) | xRy} and 6−1

Φ .

To make this definition easier to handle, denote by v the transitive closure of 6 ∪ ≡, i.e. x v y
iff there exist x0, . . . , xn ∈W such that:

• x0 = x and xn = y;

• for every i ∈ {0, . . . , n− 1} we have xi 6 xi+1 or xi ≡ xi+1.

Now, using v, the relations 6Φ and RΦ can be described as follows:

[x] 6Φ [y] ⇐⇒ x v y;

[x] RΦ [y] ⇐⇒ x v u R v w y for some u, v ∈W.
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On the other hand, following [4, Section 4], one may consider

6Φ := {([x], [y]) | for all φ ∈ Φ, if M, x  φ, then M, y  φ},
RΦ := {([x], [y]) | for all ¬φ ∈ Φ, if M, x  ¬φ, then M, y 1 φ}.

Substituting 6Φ, RΦ and 6Φ, RΦ for 6′, R′, we get

MΦ := 〈〈WΦ,6Φ, RΦ〉, ξΦ〉 and MΦ := 〈〈WΦ,6
Φ, RΦ〉, ξΦ〉.15

Naturally, 〈WΦ,6Φ, RΦ〉 and 〈WΦ,6Φ, RΦ〉 are abbreviated to WΦ and WΦ respectively. It is
easy to see that for every Φ-filtration M′ of M,

6Φ ⊆ 6′ ⊆ 6Φ and R′ ⊆ RΦ;

furthermore, in the case where M′ is strictly condensed we also have RΦ ⊆ R′.

Proposition 5.1.
Let M and Φ be as above. Then WΦ is a strictly condensed frame and MΦ is a Φ-filtration of
M.

Proof. Obviously, 6Φ is a preordering on WΦ. We also have 6Φ ◦ RΦ ◦ 6−1
Φ ⊆ RΦ:

Let x, y ∈W . Suppose there exist u, v ∈W such that

[x] 6Φ [u], [u] RΦ [v] and [y] 6Φ [v].

Then x v u, y v v and there are s, t ∈ W such that u v s R t w v. Hence x v s R t w y,
which implies [x]RΦ [y].

Thus WΦ is a strictly condensed frame. The rest is routine.

Proposition 5.2 (see [4, Section 4]).
Let M and Φ be as above. Then WΦ is a strictly condensed frame and MΦ is a Φ-filtration of
M.

Proof. Evidently, 6Φ is a preordering on WΦ. We also have 6Φ ◦ RΦ ◦
(
6Φ
)−1 ⊆ RΦ:

Let x, y ∈W . Suppose there exist u, v ∈W such that

[x] 6Φ [u], [u] RΦ [v] and [y] 6Φ [v].

Observe that for all ¬φ ∈ Φ, if M, x  ¬φ, then M, u  ¬φ, and hence M, v 1 φ, which
implies M, y 1 φ.

Thus WΦ is a strictly condensed frame. The rest is clear.

Lemma 5.3.
Let M, Φ and M′ be as above. Then for any x ∈W and φ ∈ Φ,

M, x  φ ⇐⇒ M′, [x]  φ.
15In [4], only filtrations of the form MΦ (which are, in a sense, rather ‘syntactic’) were considered. Since our

approach allows other kinds of filtration, it appears to be more flexible.
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Proof. By induction on the complexity of φ.

The case where φ ∈ Prop is trivial.

Suppose φ = ¬ψ. Consider each of the two implications separately.

=⇒ Assume x  φ. Let y ∈ W be such that [x]R′ [y]. Then y 1 ψ. So we have [y] 1 ψ by the
inductive hypothesis.

⇐= Assume [x]  φ. Let y ∈ W be such that xRy. Then [x]R′ [y], and hence [y] 1 ψ. So we
have y 1 ψ by the inductive hypothesis.

The other cases can be handled as in intuitionistic logic.

By a standard argument, this gives the following.

Theorem 5.4 (see [4, Section 4]).
N has the finite model property and is decidable.

Further applications can be obtained by studying what happens to a given frame property
when we pass from M to MΦ or MΦ for a suitable Φ.

Lemma 5.5.
Let M, Φ and M′ be as above, and let S ∈ {N1◦, N2◦}. Suppose W  S. Then W ′  S.16

Proof. N1◦ Since W is serial (see Table 1), so is W ′. Thus W ′  N1◦.

N2◦ Immediate from Lemma 5.3 — because N2◦ may be treated as variable-free.

Theorem 5.6.
N + {N2◦} and N◦ have the finite model property and are decidable.

Concerning more complex schemes:

Lemma 5.7.
Let M and Φ be as above. Suppose W  N1•. Then WΦ  N1•.

Proof. Note the composition of RΦ and 6−1
Φ coincides with RΦ. So it suffices to show that RΦ

is symmetric (see Table 1). Let x, y ∈ W be such that [x]RΦ [y]. Then x v u R v w y for some
u, v ∈W . Since R ◦ 6−1 is symmetric, there exists t ∈W such that v R t > u. Hence

y v v R t w u w x.

Therefore [y]RΦ [x].

Theorem 5.8.
N + {N1•} and N◦ + {N1•} have the finite model property and are decidable.

16Here W ′ abbreviates 〈WΦ,6′, R′〉.
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For each Φ ⊆ Form, denote by N (Φ) the closure of Φ under negation, i.e. the least set Ψ of
formulas such that Φ ⊆ Ψ and {¬φ | φ ∈ Ψ} ⊆ Ψ. Notice that the scheme ¬¬φ ↔ ¬¬¬¬φ can
be derived in N + {N1•} as follows:

1 ¬φ→ ¬¬¬φ N1•

2 ¬¬¬¬φ→ ¬¬φ from 1 (by CR)

3 ¬¬φ→ ¬¬¬¬φ N1•

4 ¬¬φ↔ ¬¬¬¬φ from 2, 3.

Hence if Φ ⊆ Form is finite, then N (Φ) may be treated as finite modulo N + {N1•}, so N (Φ) is
finitely based over any model whose frame validates N1•.17

Lemma 5.9.
Let M and Φ be as above. Suppose W  N1•. Then WN(Φ)  N1•.

Proof. For convenience, we denote N (Φ) by Ψ. Let x, y ∈ W be such that [x]RΨ [y]. For every
φ ∈ Ψ, if M, x  φ, then M, x  ¬¬φ (by N1•), and therefore M, y 1 ¬φ (because ¬φ ∈ Ψ and
[x]RΨ [y]). Thus [y]RΨ [x].

This gives us another way of proving Theorem 5.8.

For each Φ ⊆ Form we denote by C (Φ) the closure of Φ under conjunction, disjunction and
negation. Evidently, the scheme ¬φ↔ ¬¬¬φ can be derived in N + {N2•}:

1 ¬¬φ→ φ N2•

2 ¬φ→ ¬¬¬φ from 1 (by CR)

3 ¬¬¬φ→ ¬φ N2•

4 ¬φ↔ ¬¬¬φ from 2, 3.

Also, it is known that the following schemes are derivable in N + {N∗}, and hence in N + {N2•}
(by Proposition 3.2):

• ¬ (φ ∨ ψ)↔ (¬φ ∧ ¬ψ);

• ¬ (φ ∧ ψ)↔ (¬φ ∨ ¬ψ).

Consequently, if Φ ⊆ Form is finite, then C (Φ) may be treated as finite modulo N + {N2•}, so
C (Φ) is finitely based over any model whose frame validates N2•.

Lemma 5.10.
Let M and Φ be as above, with Φ finite. Suppose W  N2•. Then WC(Φ)  N2•.

Proof. For convenience, take Ψ := C (Φ). Assume, by way of contradiction, that WΨ does not
have the property corresponding to N2•, i.e. there exists x ∈W such that for every y ∈W ,

[x]RΨ [y] =⇒
there exists z ∈W such that

[y]RΨ [z] and [z] 66Ψ [x].

17It follows that for any M and Φ as above, if W  N1• and Φ is finite, then WN(Φ) is finite — though N (Φ)
is infinite, provided that Φ 6= ∅.
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For each y ∈W such that [x]RΨ [y], choose zy ∈W and φy ∈ Ψ satisfying

[y]RΨ [zy], M, zy  φy and M, x 1 φy.

Take Θ to be
{
φy | y ∈W and [x]RΨ [y]

}
. Obviously, since W is serial (recall Proposition 3.2),

Θ is non-empty. Moreover, it can be treated as a finite set (see the comments made just before
this lemma). Consider

θ :=
∨

Θ.

We have M, x 1 θ, which implies M, x 1 ¬¬θ (by N2•), so MΨ, [x] 1 ¬¬θ by Lemma 5.3. On
the other hand, for every y ∈ W , if [x]RΦ [y], then M, zy  θ, so MΨ, [zy]  θ by Lemma 5.3,
and therefore MΨ, [y] 1 ¬θ. Thus MΨ, [x]  ¬¬θ, a contradiction.

Theorem 5.11.
N∗ + {N2•} and N• have the finite model property and are decidable.

5.2 More specific filtrations

Now we are going to present a different way of proving Theorem 5.11. It uses a special kind of
filtration suitable for Routley models whose frames validate N1• or N2•.

Fix a Routley model M. Let Φ ⊆ Form be closed under subformulas and under negation —
so in particular, N (Φ) = Φ. Define the special Φ-filtration of M to be

MΦ = 〈〈WΦ,6Φ, ∗Φ〉, ξΦ〉

where WΦ, 6Φ and ξΦ are as before, and ∗Φ maps each [x] in WΦ to [x∗]. Note that since Φ is
closed under negation, the definition of ∗Φ is correct; furthermore, one can easily check that ∗Φ
is anti-monotone with respect to 6Φ. Thus MΦ is a Routley model. Naturally, we shall abbre-
viate 〈WΦ,6Φ, ∗Φ〉 to WΦ.

Lemma 5.12.
Let M and Φ be as above. Then for any x ∈W and φ ∈ Φ,

M, x  φ ⇐⇒ MΦ, [x]  φ.

Proof. By induction on the complexity of φ.

The case where φ ∈ Prop is trivial.

Suppose φ = ¬ψ. Then

M, x  φ ⇐⇒ M, x∗ 1 ψ

⇐⇒ MΦ, [x
∗] 1 ψ

⇐⇒ MΦ, [x]
∗ 1 ψ

⇐⇒ MΦ, [x]  φ

where [x]
∗

stands for ∗Φ ([x]), of course.

The other cases can be handled as in intuitionistic logic.

Lemma 5.13.
Let M and Φ be as above, and let S ∈ {N1•, N2•}. Suppose W  S. Then WΦ  S.
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Proof. It is easy to check that for every Routley frame W′:

W′  N1• ⇐⇒ x 6 x∗∗ for all x ∈W ′;
W′  N2• ⇐⇒ x∗∗ 6 x for all x ∈W ′.

In particular, this holds for W′ ∈ {W,WΦ}.

N1• For every x ∈W we have [x] 6Φ [x∗∗] = [x∗]
∗

= [x]
∗∗

. Thus WΦ  N1•.

N2• Similarly to N1•.

This leads to a refinement of Theorem 5.11:

Theorem 5.14.
N∗ + {N1•}, N∗ + {N2•} and N• have the finite model property in terms of Routley models and
are decidable.

6 Further discussion

One may wish to look at N and its extensions from a somewhat more general point of view. In
particular, following [12], Došen’s semantics can be modified by replacing 〈W,6, R〉 by 〈W,6,
R,N〉 where N is a subset of W such that for any x, y ∈W ,

x ∈ N and x 6 y =⇒ y ∈ N

(the elements of N are called normal worlds). Then M, x  φ is defined as before, except that
the negation clause becomes a bit more complicated:

M, x  ¬ψ :⇐⇒ (M, y 1 ψ for all y ∈ R (x)) and x ∈ N.

Naturally, some of the claims made with Došen’s semantics in mind may fail when we pass to
the modified semantics. One may proceed to study the problems discussed above in this more
general setting.
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