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Abstract

This paper is concerned with a two-sorted probabilistic language, denoted by QPL, which

contains quantifiers over events and over reals, and can be viewed as an elementary language

for reasoning about probability spaces. The fragment of QPL containing only quantifiers over

reals is a variant of the well-known ‘polynomial’ language from [3, Section 6]. We shall prove

that the QPL-theory of the Lebesgue measure on [0, 1] is decidable, and moreover, all atomless

spaces have the same QPL-theory. Also we shall introduce the notion of elementary invariant

for QPL, and use it to translate the semantics for QPL into the setting of elementary analysis.

This will allow us to obtain further decidability results as well as to provide exact complexity

upper bounds for a range of interesting undecidable theories.

Keywords: probability logic, quantification over events, quantification over reals, decidability, com-

plexity, elementary invariants, elementary theories
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1 Introduction

We shall be concerned with the two-sorted probabilistic language QPL proposed in [16]. It can be

obtained by combining the elementary language of Boolean algebras and that of (ordered) fields in

a natural way. Its fragment containing only quantifiers over reals (but not over events) is a variant

of the well-known ‘polynomial’ language from [3, Section 6]. In general, the present work may be

seen as a study in elementary theories of various classes of probability spaces; cf. [2], [6], [12], [17]

and [18].

Several important complexity results about QPL have been obtained in [16]. In particular, we

know that for any class K of probability spaces, if K contains all infinite discrete spaces, then its

QPL-theory is at least as complex as complete second-order arithmetic. The QPL-theory of finite

spaces is much simpler but still undecidable — it turns out to be Π0
1-complete. Furthermore, these

results continue to hold if we exclude quantifiers over reals. On the other hand, for each positive

integer n, the QPL-theory of spaces with exactly n elements is easily shown to be decidable. One

may wonder whether there are more interesting examples of decidable probabilistic theories. We

shall answer this question affirmatively by proving that every atomless space has the same QPL-

theory as the Lebesgue measure on [0, 1], and this theory is decidable. To derive the latter, Tarski’s

decidability result about the ordered field of reals (see [18]) will be utilised.

Another interesting problem arising in quantified probability logic concerns complexity upper

bounds: probability spaces cannot be directly encoded in the language of higher-order arithmetic,

which makes it difficult to provide complexity upper bounds for many natural undecidable proba-

bilistic theories. To overcome this difficulty, we shall introduce the notion of elementary invariant

for QPL, and use it to translate the semantics for QPL into the setting of elementary analysis — or

that of second-order arithmetic. In particular, this will allow us to prove that for each ‘analytical’

class of probability spaces its QPL-theory is reducible to complete second-order arithmetic, which

solves one of the main problems of [16]. At the same time, the translation mentioned above can be

used to derive some further decidability results.

Certainly many probabilistic languages have been proposed and studied during the last several

decades. They are interesting in their own right. Still, QPL is quite different from other probability

logics with quantifiers, e.g. those in [1] and [7]. In particular, in Halpern’s languages of type 1 we

have:

i. quantifiers over ‘elementary events’, but not over measurable sets of elementary events, i.e.

not over arbitrary events;

ii. formulas like µ ({x | Φ (x, y⃗)}) ⩾ 1/2 where Φ is a first-order formula in a given signature,

and the individual variables x, y⃗ are intended to range over elementary events;

iii. formulas containing nested occurrences of µ.

There are pros and cons to dealing with such languages. For instance, while (ii) is a useful feature,

it also leads to well-known measurability problems — since a projection of a measurable set is not
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necessarily measurable; see [16, Section 5] for further discussion. This paper aims at presenting an

‘elementary’ perspective on the subject, where arbitrary events are treated as a basic sort of object

(compare [12]).

Note that, in general, probability logics with quantifiers tend to be highly undecidable. But the

situation is different with quantifier-free languages, or even those containing only quantifiers over

reals. In particular, the reader may consult [3], [4] and [8] for some nice complexity results — deal-

ing with classes like NP, ∃R and PSPACE — and related axiomatizations. One natural direction of

future research is to obtain similar results for decidable fragments of QPL.

2 Quantified probability logic

By a probability space, or simply a space, we mean a pair ⟨A ,P⟩ where:

• A is a σ-algebra, i.e. a Boolean algebra in which every countable set of elements has a supre-

mum (and hence an infimum);

• P is a probability measure on A , i.e. a function from A to [0, 1] such that for any countable

set S of pairwise disjoint elements of A ,

P
(∨

S
)

=
∑

A∈S
P (A),

and also P (⊤) = 1 where ⊤ denotes the greatest element of A .

Each element of A is called an event, which is measurable with respect to P.

Since the very definition of a space involves two different sorts of object, our formal language

QPL will include two disjoint countable sets of variables:

Var := {X, Y, Z, . . . } and var := {x, y, z, . . . }.

Elements of Var are intended to range over events, and called Boolean variables, while those of var

are intended to range over reals, and called field variables. This in turn suggests considering two

sets of function symbols:

{⊥,⊤,∧,∨,¬} and {0, 1,+, · ,−},

viz. the symbols of the language of Boolean algebras and those of the language of fields. In addition

to these, we will need a special symbol µ to denote a probability measure.

The Boolean terms are build up from ⊥, ⊤ and the Boolean variables as follows:

• if ϕ is a Boolean term, so is ¬ϕ;

• if ϕ1 and ϕ2 are Boolean terms, so are ϕ1 ∧ ϕ1 and ϕ1 ∨ ϕ2.
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Naturally, they represent Boolean combinations of events. By a µ-term we mean an expression of

the form µ (ϕ) where ϕ is a Boolean term. The field terms are built up from 0, 1, the field variables

and the µ-terms as follows:

• if t is a field term, so is −t;

• if t1 and t2 are field terms, so are t1 · t2 and t1 + t2.

Roughly, each field term can be put in the form

f (x1, . . . , xm, µ (ϕ1), . . . , µ (ϕn))

where f is a polynomial with integer coefficients, x1, . . . , xm are field variables, and ϕ1, . . . , ϕn are

Boolean terms. Now by a basic QPL-formula we mean an expression of the form

t1 < t2 or t1 = t2 or t1 ⩽ t2

where t1 and t2 are field terms.

We shall use ∧, ∨ and ¬ to denote not only the Boolean operations but also the ordinary logical

connectives. Since their Boolean versions will not occur outside the scope of µ, the interpretations

of ∧, ∨ and ¬ will always be clear from the context. Take the quantifier symbols to be ∀ and ∃. Then

the QPL-formulas are built up from the basic QPL-formulas using the logical connective symbols

and quantifiers — binding either Boolean or field variables — in the customary way. We abbreviate

¬Φ ∨Ψ to Φ → Ψ and (Φ → Ψ) ∧ (Ψ → Φ) to Φ ↔ Ψ.

For each QPL-formula Φ, define Free (Φ) to be the set of all variables (of any of the two sorts)

that occur free in Φ. We also let

FV (Φ) := Free (Φ) ∩ Var and Fv (Φ) := Free (Φ) ∩ var.

Call Φ a QPL-sentence if Free (Φ) = ∅. Denote by Sent the collection of all QPL-sentences.

The satisfiability relation ⊩ for QPL can be defined in the obvious way, and it behaves like one

would expect. In more detail, let P = ⟨A ,P⟩ be a space. By a Boolean valuation in P we mean a

partial function from Var to A . By a field valuation is meant a partial function from var to R. To

sum up, we deal with pairs ⟨ζ, ι⟩ where ζ : ⊆ Var → A and ι : ⊆ var → R. Then

P ⊩ Φ [ζ, ι]

is defined by induction on Φ, provided that Free (Φ) ⊆ dom ζ ∪ dom ι, as in classical two-sorted

first-order logic. Clearly, it does not matter what values ⟨ζ, ι⟩ assigns to (Var ∪ var) \ Free (Φ). If

Φ ∈ Sent, we often omit [ζ, ι] and write P ⊩ Φ instead of P ⊩ Φ [ζ, ι]. For example, consider

Φ := ∀x (0 ⩽ x ⩽ 1 → ∃X x = µ (X)).

Then P ⊩ Φ iff for every r ∈ [0, 1] there exists A ∈ A such that P (A) = r. We say that Φ1 and

Φ2 are semantically equivalent if for any space P , Boolean valuation ζ in P and field valuation ι,

P ⊩ Φ1 [ζ, ι] ⇐⇒ P ⊩ Φ2 [ζ, ι].
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— intuitively, this means that Φ1 and Φ2 are interchangeable.

Obviously, A may vary from space to space, while R remains unchanged. If we expand QPL to

QPL by adding a new constant symbol r for each r ∈ R, then ζ can be used instead of ⟨ζ, ι⟩; thus

we may limit ourselves to the case where Free (Φ) ⊆ Var. However, the expanded language QPL

will be uncountable, namely of cardinality 2ℵ0
.

Remark 2.1. The fragment of QPL containing only quantifiers over reals (but not over events) can

be viewed as the ‘polynomial’ logic described earlier in [3, Section 6], where Boolean variables are

treated as constant symbols and called propositional variables — so Boolean terms become proposi-
tional formulas. A study of quantification over propositional formulas in probability logic has been

carried out in [13].

Let K be a class of probability spaces. By the QPL-theory of K, written Th (K), we mean

{Φ ∈ Sent | P ⊩ Φ for all P ∈ K}.

The set of all sentences in Th (K) that do not contain quantifiers over reals is denoted by The (K).

We shall often write Th (P) and The (P) instead of Th ({P}) and The ({P}) respectively. Two

probability spaces are called elementarily equivalent if their QPL-theories coincide (in other words,

they are indistinguishable by means of QPL-sentences).

In general, QPL-theories tend to have very high degrees of undecidability. In particular, using

an alternative description of the analytical hierarchy given in [14, Section 3] (see [15] for further

results in this area), we can obtain:

Theorem 2.2 (see [16])

Let K be a class of spaces. Suppose that K contains all infinite discrete spaces. Then The (K) is at least
as complex as complete second-order arithmetic, i.e. the latter is reducible to The (K).

Still, some interesting examples of decidable QPL-theories will be discovered later.

3 Passing to quotients

Two spaces P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ are called isomorphic if there exists f : A1 → A2

such that:

• f is an isomorphism of A1 onto A2, thought of as Boolean algebras;

• P1 (A) = P2 (f (A)) for all A ∈ A1.

Naturally, one can easily show that if P1 and P2 are isomorphic via f , then for any QPL-formula

Φ, Boolean valuation ζ in P1 and field valuation ι,

P1 ⊩ Φ [ζ, ι] ⇐⇒ P2 ⊩ Φ [ζ ◦ f, ι],
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which implies Th (P1) = Th (P2).

The notion of isomorphism may be relaxed in the following way. Consider the QPL-formula

X ≈ Y := µ ((X ∧ ¬Y ) ∨ (Y ∧ ¬X)) = 0.

Let P = ⟨A ,P⟩ be a space. Evidently, X ≈ Y defines (in P) a very natural equivalence relation

on A , namely

E := {(A1, A2) ∈ A × A | P ⊩ A1 ≈ A2}.

In particular, E turns out to be a congruence relation on A . For each A ∈ A , denote by [A]≈ the

equivalence class of A under E , i.e.

[A]≈ := {B ∈ A | (A,B) ∈ E }.

Now take A≈ to be the collection of all such classes — or rather, the quotient Boolean algebra of A

modulo E — and define P≈ : A≈ → [0, 1] by

P≈ ([A]≈) := P (A)

(note that P (A) = P (B) for all B ∈ [A]≈). It is easy to check that P≈ = ⟨A≈,P≈⟩ is a probability

space, called the quotient space of P modulo events of measure zero. Moreover, one can show that

for any QPL-formula Φ, Boolean valuation ζ in P and field valuation ι,

P ⊩ Φ [ζ, ι] ⇐⇒ P≈ ⊩ Φ [ζ≈, ι]

where ζ≈ is the Boolean valuation given by

ζ≈ (X) := [ζ (X)]≈.

Finally, we call P1 and P2 weakly isomorphic if (P1)≈ and (P2)≈ are isomorphic. Consequently,

if two spaces are weakly isomorphic, then they are elementarily equivalent, i.e. have the same QPL-

theory.

Let P = ⟨A ,P⟩ be a space. Now if P ⊩ A1 ≈ A2, i.e. the symmetric difference of A1 and A2

has measure zero, then A1 and A2 are indistinguishable in P by QPL-formulas (with parameters).

So definability in P reduces to definability in P≈. For instance, consider

X ≼ Y := X ∧ Y ≈ X.

Obviously, P ⊩ A1 ≼ A2 iff [A1]≈ is less than or equal to [A2]≈ in the Boolean algebra A≈. Next,

consider

At (X) := µ (X) ̸= 0 ∧ ∀Y (µ (Y ) ̸= 0 ∧ Y ≼ X → Y ≈ X).

Clearly, P ⊩ At (A) iff [A]≈ is an atom of A≈.
1

We call P atomless if P ⊩ ¬∃X At (X), i.e. A≈ is

an atomless Boolean algebra. There are alternative definitions, of course, but the one given here is

in the spirit of Boolean algebras; cf. [5].

1
Recall that A ∈ A is an atom of A if A is minimal in A \ {⊥} where ⊥ denotes the least element of A ; see [5],

for example.
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Remark 3.1. On the other hand, there are probability logics in which we cannot safely pass from

each structure to the corresponding quotient structure modulo events of measure, without altering

its theory. In particular, this applies to the languages studied in [1]. In effect, the Π2
1-hardness ar-

guments provided in [1] work over ‘generalized discrete spaces’, which may contain uncountably

many elements of measure zero, but fail over ordinary discrete spaces, whose underlying sets are at

most countable.

4 The standard atomless space

The most standard choice of atomless probability space is

L := ⟨S , L⟩

where S is the σ-algebra of Lebesgue measurable subsets of [0, 1] (i.e. of the closed unit interval of

real numbers), and L is the corresponding measure.

Intuitively, L behaves as smooth as one may expect in the present context. So the next result

looks rather natural.

Theorem 4.1

Th (L ) is decidable.

We shall reduce the problem of testing membership in Th (L ) to that of testing membership in

the first-order theory of the ordered field R of reals, which is well-known to be decidable (see [17]

for details). Our argument will be based on a number of lemmas and propositions.

For each finite set S of Boolean variables, by a basic conjunction over S we mean an expression

of the form

Xε1
1 ∧ . . . ∧Xεn

n

where {ε1, . . . , εn} ⊆ {0, 1}, X1, . . . , Xn are pairwise distinct elements of S, and n equals |S| (so

every element of S occurs in this conjunction).
2

In case S is empty, we assume that ⊥ is the only

basic conjunction over S. Moreover, we shall identify two basic conjunctions if they differ only in

the order of the conjuncts. Call a QPL-formula normal if it has the form

Q1v1 . . .QnvnΨ

where {Q1, . . . ,Qn} ⊆ {∀, ∃}, v1, . . . , vn are pairwise distinct elements of Free (Ψ), Ψ is quantifier-

free, and every µ-term occurring in Ψ has the form µ (ψ) with ψ a basic conjunction over FV (Ψ).

Without loss of generality, we can restrict attention to such QPL-formulas:

Lemma 4.2

Every QPL-formula is semantically equivalent to a normal QPL-formula.
2
We shall sometimes write ϕ1

instead of ϕ and ϕ0
instead of ¬ϕ. Similarly for QPL-formulas and formulas in the

first-order language of R.
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Proof. Let Φ be a QPL-formula. As in classical first-order logic, Φ can be put in the form

Q1v1 . . .QnvnΘ

where {Q1, . . . ,Qn} ⊆ {∀, ∃}, v1, . . . , vn are pairwise distinct elements of Free (Θ) and Θ is quan-

tifier-free. It remains to show that Θ is semantically equivalent to a quantifier-free QPL-formula Ψ

such that Free (Ψ) = Free (Θ), and every µ-term occurring in Ψ has the form µ (ψ) with ψ a basic

conjunction over FV (Ψ). To this end, for each Boolean term ϕ whose variables lie in FV (Θ), we

define

C (ϕ) :=
the set of all basic conjunctions over FV (Θ) that

imply ϕ in classical propositional logic.

Take Ψ to be the result of replacing each µ-term µ (ϕ) in Θ by

∑
ψ∈C(ϕ) µ (ψ). It is easy to see that

Ψ has the required properties.

Let S be a set of Boolean variables, P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ be probability spaces, ζ1

and ζ2 be functions from S to A1 and A2 respectively. We say that ζ1 and ζ2 are similar if for every

basic conjunction ϕ over S,

P1 (ζ1 (ϕ)) = P2 (ζ2 (ϕ)).

Note that if ζ1 and ζ2 are similar, then we also have P1 (ζ1 (ϕ)) = P2 (ζ2 (ϕ)) for all Boolean terms ϕ

whose variables lie in S.

Lemma 4.3

Let S be a finite set of Boolean variables, ζ and ξ be functions from S to S , X be a Boolean variable
that lies outside S. Suppose ζ and ξ are similar (with respect to L ). Then for every A ∈ S there exists
B ∈ S such that ζXA and ξXB are similar.3

Proof. Consider an arbitrary A ∈ S . A simple fact from analysis tells us that for any B ∈ S ,

{L (C) | C ∈ S and C ⊆ B} = [0, L (B)]. (†)

Using (†), for each basic conjunction ϕ over S we can choose Bϕ ∈ S such that Bϕ ⊆ ξ (ϕ) and

L (Bϕ) = L
(
ζXA (ϕ ∧X)

)
, and then take

B :=
⋃

{Bϕ | ϕ is a basic conjunction over S} .

It is easy to see that ξXB is similar to ζXA .

Using Lemma 4.3, we show that similar Boolean valuations in L are indistinguishable by QPL-

formulas in the following sense:

Proposition 4.4

Let Φ be a QPL-formula, ζ and ξ be functions from FV (Φ) to S . Suppose that ζ and ξ are similar
(with respect to L ). Then for every function ι from Fv (Φ) to R,

L ⊩ Φ [ζ, ι] ⇐⇒ L ⊩ Φ [ξ, ι].
3
Here ζXA denotes ζ ∪ {(X,A)}.
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Proof. By induction on the complexity of Φ. By Lemma 4.2, we may assume Φ is normal. Note that

all subformulas of Φ are also normal.

In the case where Φ is quantifier-free the result is immediate.

Suppose Φ = ∃X Ψ. Assume L ⊩ Φ [ζ, ι], i.e. there exists A ∈ S such that L ⊩ Ψ
[
ζXA , ι

]
. By

Lemma 4.3, since ζ and ξ are similar, one can find B ∈ S such that ζXA and ξXB are similar as well.

Thus L ⊩ Ψ
[
ξXB , ι

]
by the inductive hypothesis. It follows that L ⊩ Φ [ξ, ι]. The converse impli-

cation holds by symmetry.

The case where Φ = ∀X Ψ can be handled similarly.

The cases where Φ is ∃xΨ or ∀xΨ are trivial.

Call a Boolean valuation ζ in L (i.e. a partial function from Var to S ) compact if for each basic

conjunction ϕ over dom ζ , ζ (ϕ) is a subinterval of [0, 1].

Lemma 4.5

Let S be a finite set of Boolean variables, ζ be a compact function from S to S , and X be a Boolean
variable that lies outside S. Then for every A ∈ S there exists B ∈ S such that ζXB is compact and
similar to ζXA .

Proof. Consider an arbitrary A ∈ S . For each basic conjunction ϕ over S, denote the infimum of

ζ (ϕ) in R — i.e. the left endpoint of the interval ζ (ϕ) — by aϕ, and set

Bϕ := ζ (ϕ) ∩
[
0, aϕ + L

(
ζXA (ϕ ∧X)

)]
— so in particular, we have L (Bϕ) = L

(
ζXA (ϕ ∧X)

)
. Take

B :=
⋃

{Bϕ | ϕ is a basic conjunction over S}.

It is easy to see that ζXB has the required properties.

Corollary 4.6

Let S be a finite set of Boolean variables and ζ be a function from S to S . Then there exists a compact
function ξ from S to L such that ζ and ξ are similar.

Proof. This can easily be shown using Lemmas 4.3 and 4.5, by induction on |S|.

Next we describe an alternative semantics for normal QPL-formulas over L , which uses only

compact Boolean valuations. For any normal QPL-formula Φ, compact function ζ from FV (Φ) to

S and function ι from Fv (Φ) to R, define L ▷ Φ [ζ, ι] recursively:

• in the case where Φ is quantifier-free, set L ▷ Φ [ζ, ι] iff L ⊩ Φ [ζ, ι];

• in the case where Φ = ∃X Ψ we set

L ▷ Φ [ζ, ι] :⇐⇒
there exists A ∈ S such that

ζXA is compact and L ▷ Ψ
[
ζXA , ι

]
.
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• in the case where Φ = ∀X Ψ we set

L ▷ Φ [ζ, ι] :⇐⇒
for all A ∈ S , if ζXA is compact,

then L ▷ Ψ
[
ζXA , ι

]
.

• the cases where Φ is ∃xΨ or ∀xΨ are treated in the standard way.

This semantics turns out to be equivalent to the usual one:

Proposition 4.7

Let Φ be a normal QPL-formula. Then for any compact function ζ from FV (Φ) to S and function ι
from Fv (Φ) to R,

L ⊩ Φ [ζ, ι] ⇐⇒ L ▷ Φ [ζ, ι] .

Proof. By induction on the complexity of Φ.

In the case where Φ is quantifier-free the result is obvious.

Suppose Φ = ∃X Ψ. Assume L ⊩ Φ [ζ, ι], i.e. there exists A ∈ S such that L ⊩ Ψ
[
ζXA , ι

]
. By

Lemma 4.5, one can find B ∈ S such that ζXB is compact and similar to ζXA . Hence L ⊩ Ψ
[
ζXB , ι

]
by Proposition 4.4, and thus L ▷Ψ

[
ζXB , ι

]
by the inductive hypothesis. It follows that L ▷ Φ [ζ, ι].

The converse is much easier: if L ▷ Φ [ζ, ι], then there exists A ∈ S such that ζXA is compact and

L ▷Ψ
[
ζXA , ι

]
; hence L ⊩ Ψ

[
ζXA , ι

]
by the inductive hypothesis, which gives L ⊩ Φ [ζ, ι].

The case where Φ = ∀X Ψ can be handled similarly.

The cases where Ψ is ∃xΨ or ∀xΨ are trivial.

Finally, {Φ ∈ Sent | Φ is normal and L ▷ Φ} can be easily reduced to the first-order theory of

R. Consider a normal QPL-sentence Φ. Given a Boolean variable X occurring in Φ, define

ΦX := the subformula of Φ beginning with QX for some Q ∈ {∀,∃}.

(The normality of Φ guarantees that ΦX exists and is unique.) For our reduction, we shall represent

X as a union of finitely many intervals. To this end, set

ℓ (X) := 2|FV(ΦX)|.

The intervals for X will be coded by the ℓ (X)-tuple

X := ⟨⟨aX,i, bX,i, cX,i, dX,i⟩⟩ℓ(X)
i=1

of quadruples of fresh field variables, which must be different from the field variables occurring in

Φ. The intuition is that each ⟨aX,i, bX,i, cX,i, dX,i⟩ corresponds to

AX,i :=


[aX,i, bX,i) if cX,i = 1 and dX,i ̸= 1

(aX,i, bX,i] if cX,i ̸= 1 and dX,i = 1

[aX,i, bX,i] if cX,i = 1 and dX,i = 1

(aX,i, bX,i) otherwise.
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Now let S be a finite set of Boolean variables. We use S to abbreviate ⟨X⟩X∈S . Roughly speaking,

S determines the function ζ from S to S given by

ζ (X) :=

ℓ(X)⋃
i=1

AX,i.

For each function δ from S to {0, 1} we introduce the first-order formulas

Eδ (x, S) := 0 ⩽ x ⩽ 1∧∧
X∈S

(∨ℓ(X)

i=1
(aX,i < x < bX,i ∨ (x = aX,i ∧ cX,i = 1) ∨ (x = bX,i ∧ dX,i = 1))

)δ(X)

,

Iδ (a, b, S) := a ⩽ b∧
∀x ((a < x < b→ Eδ (x, S)) ∧ (Eδ (x, S) → a ⩽ x ⩽ b)).

Intuitively, if S determines ζ , then

Eδ (x, S) says ‘x belongs to ζ
(∧δ

S
)

’,

Iδ (a, b, S) says ‘ζ
(∧δ

S
)

is a subinterval of [0, 1] with endpoints a and b’

where

∧δ S denotes

∧
X∈S X

δ(X)
. Hence the condition ‘ζ is compact’ can be expressed by

C (S) :=
∧

δ∈{0,1}S
∃a ∃b Iδ (a, b, S)

where {0, 1}S is the set of all functions from S to {0, 1}. Also, for each X ∈ S, to make sure that

the field variables in X behave as expected, we need

P (X) :=
∧ℓ(X)

n=1
0 ⩽ aX,n ⩽ bX,n ⩽ 1.

Using these first-order formulas, Φ can be translated into τ (Φ) as follows.

• Letting Ψ be the quantifier-free part of Φ, define

Ψ∗ := ∃a1 ∃b1 . . . ∃a2|S| ∃b2|S|

(∧2|S|

i=1
Iδi (ai, bi, S) ∧Ψ

)
where S = FV (Ψ), {δ1, . . . , δ2|S|} = {0, 1}S , and Ψ is the result of replacing each µ-term

µ
(∧δi S

)
in Φ by (bi − ai).

• Next, for each subformula Θ of Φ beginning with a quantifier, we recursively define

Θ∗ :=


∃X (P (X) ∧ C (S) ∧ Ω∗) if Θ = ∃X Ω

∀X (P (X) ∧ C (S) → Ω∗) if Θ = ∀X Ω

∃xΩ∗
if Θ = ∃xΩ

∀xΩ∗
if Θ = ∀xΩ

where S = FV (Ψ). Now set τ (Φ) to be Φ∗
.
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It is easy to show the following.

Proposition 4.8

For every normal QPL-sentence Φ,

L ▷ Φ ⇐⇒ τ (Φ) is true in R.

Proof. Observe that if S is a finite set of Boolean variables, and ζ is a compact function from S to

S , then for every X ∈ S, ζ (X) can be represented as⋃{
ζ
(∧δ

S
)
| δ ∈ {0, 1}S and δ (X) = 1

}
,

which is a union of 2|S|−1
intervals. Hence the function ℓ works nicely. The rest of the argument is

straightforward, by the definition of ▷.

Proof of Theorem 4.1. Clearly, Lemma 4.2 can be effectivised, i.e. there exists a computable function

that, given any QPL-formula Φ, finds a normal QPL-formula Φ′
semantically equivalent to Φ. So

for every QPL-sentence Φ,

L ⊩ Φ ⇐⇒ L ⊩ Φ′

4.7⇐⇒ L ▷ Φ′

4.8⇐⇒ τ (Φ′) is true in R.

Hence the QPL-theory of L is reducible to the first-order theory of R.

Since Th (L ) includes the first-order theory of R, Theorem 4.1 may be viewed as an expansion

of Tarski’s famous result. In subsequent sections, the technique described above will be developed

further, with the argument of Theorem 4.1 serving as a framework for various generalizations.

5 Arbitrary atomless spaces

There is an analogue of (†) from the proof of Lemma 4.3:

Proposition 5.1 (see [10])

Let P = ⟨A ,P⟩ be an atomless space. Then for every A ∈ A ,

{P (B) | B ∈ A and B ⩽ A} = [0,P (A)]

where ⩽ denotes the ordering relation in A .

Since [10] was written in French, we provide an alternative proof in the Appendix; our argument

is somewhat more direct and uses transfinite recursion instead of Zorn’s lemma.

As for Lemma 4.3 itself, it can be strengthened as follows.
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Lemma 5.2

Let P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ be atomless spaces, S be a finite set of Boolean variables, ζ and
ξ be functions from S to A1 and A2 respectively, X be a Boolean variable that lies outside S. Suppose
ζ and ξ are similar. Then for every A ∈ S there exists B ∈ S such that ζXA and ξXB are similar.

Proof. Consider an arbitrary A ∈ S . Now using Proposition 5.1, for each basic conjunction ϕ over

S, choose Bϕ ∈ A2 such that Bϕ ⩽ ξ (ϕ) and P2 (Bϕ) = P1

(
ζXA (ϕ ∧X)

)
, and then take

B :=
∨

{Bϕ | ϕ is a basic conjunction over FV (Φ)} .

It is easy to see that ξXB is similar to ζXA .

This in turn leads to a stronger version of Proposition 4.4:

Proposition 5.3

Let P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ be atomless spaces, Φ be a QPL-formula, ζ and ξ be functions
from FV (Φ) to A1 and A2 respectively. Suppose ζ and ξ are similar. Then for every function ι from
Fv (Φ) to R,

P1 ⊩ Φ [ζ, ι] ⇐⇒ P2 ⊩ Φ [ξ, ι].

Proof. The argument is essentially the same as that for Proposition 4.4, by induction on the comp-

lexity of Φ. By Lemma 4.2, we may assume Φ is normal.

In the case where Φ is quantifier-free the result is immediate.

Suppose Φ = ∃X Ψ. Assume P1 ⊩ Φ [ζ, ι], i.e. there exists A ∈ A1 such that P1 ⊩ Ψ
[
ζXA , ι

]
.

By Lemma 5.2, since ζ and ξ are similar, one can find B ∈ A2 such that ζXA and ξXB are similar too.

Thus P2 ⊩ Ψ
[
ξXB , ι

]
by the inductive hypothesis. It follows that P2 ⊩ Φ [ξ, ι]. The converse imp-

lication holds by symmetry.

The case where Φ = ∀X Ψ can be handled similarly.

The cases where Φ is ∃xΨ or ∀xΨ are trivial.

Theorem 5.4

Let P be an atomless space. Then Th (P) coincides with Th (L ), and hence is decidable.

Proof. Proposition 5.3 implies Th (P) = Th (L ), and Th (L ) is decidable by Theorem 4.1.

Thus all atomless probability spaces are elementarily equivalent to each other, i.e. have the same

QPL-theory, namely Th (L ). This suggests that a nice elementary classification of spaces should

be based on the notion of atom (cf. [5]).

14



6 Elementary invariants

Let P = ⟨A ,P⟩ be a space. Take

DP := the collection of all atoms of A≈.

Observe that DP is at most countable.
4

Denote

∨
DP by dP . By the elementary invariant of P we

mean the function ♯P from (0, 1] to N given by

♯P (r) := |{A ∈ DP | P≈ (A) = r}|.

Note that since {r ∈ R+ | ♯P (r) ̸= 0} is at most countable, ♯P may be encoded as a subset of N —

this will play an important role in Section 7. We call P atomic if A≈ is an atomic Boolean algebra

(cf. [5]), i.e.

P ⊩ ∀X (µ (X) ̸= 0 → ∃Y (At (Y ) ∧ Y ≼ X)).

Evidently, we have

P is atomic ⇐⇒ P≈ (¬dP) = 0

⇐⇒ dP = [⊤]≈

⇐⇒
∑

r∈(0,1]
r · ♯P (r) = 1

⇐⇒ P≈ is discrete.

On the other hand,

P is atomless ⇐⇒ P≈ (dP) = 0

⇐⇒ dP = [⊥]≈

⇐⇒ ♯P is the zero function.

In general, modulo events of measure zero, each probability space can be represented as a convex

combination of a discrete space and an atomless space. In addition to ♯P , we shall make use of the

function λP from A × (0, 1] to N given by

λP (A, r) := |{B ∈ DP | B ⩽ [A]≈ and P≈ (B) = r}|.

Obviously, λP (⊤, r) = ♯P (r) for all r ∈ (0, 1]. Thus λP extends ♯P .

The following modification of Proposition 5.1 will turn out to be helpful.

Proposition 6.1

Let P = ⟨Ω,A ,P⟩ be a space. Then for every A ∈ A ,

[A]≈ ⩽ ¬dP =⇒ {P (B) | B ∈ A and B ⩽ A} = [0,P (A)].

4
See (2) in the proof of Proposition 5.1 provided in Appendix.
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Proof. Let A ∈ A be such that [A]≈ ⩽ ¬dP . If P (A) = 0, then the result is trivial. Suppose A has

positive measure. Take AA to be {B ∈ A | B ⩽ A}, and define PA : AA → [0, 1] by

PA (B) :=
P (B)

P (A)
.

Obviously, PA = ⟨AA,PA⟩ is an atomless space. Therefore

{P (B) | B ∈ A and B ⩽ A} = {PA (B) · P (A) | B ∈ AA}
5.1
= [0,P (A)].

Let S be a set of Boolean variables, P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ be probability spaces, ζ1

and ζ2 be functions from S to A1 and A2 respectively. We say that ζ1 and ζ2 are congruent if they

are similar, and moreover, for any basic conjunction ϕ over S and r ∈ (0, 1],

λP1 (ζ1 (ϕ), r) = λP2 (ζ2 (ϕ), r).

So if ζ1 and ζ2 are congruent, then the elementary invariants of P1 and P2 coincide. Moreover, if

P1 and P2 are atomless, then ζ1 and ζ2 are congruent iff they are similar.

Now Lemma 5.2 can be generalised as follows.

Lemma 6.2

Let P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ be spaces, S be a finite set of Boolean variables, ζ and ξ be
functions from S to A1 and A2 respectively, X be a Boolean variable not in S. Suppose that ζ and ξ
are congruent. Then for every A ∈ A1 there exists B ∈ A2 such that ζXA and ξXB are congruent.

Proof. Consider an arbitrary A ∈ A1. For convenience, fix D1 ∈ A1 and D2 ∈ A2 such that

[D1]≈ = dP1 and [D2]≈ = dP2 .

Intuitively, D1 and D2 correspond to the atomic parts of P1 and P2 respectively (modulo events

of measure zero). Let ϕ be a basic conjunction over S. Then since ζ and ξ are congruent, we can

choose B+
ϕ ∈ A2 such that:

• B+
ϕ ⩽ ξ (ϕ) ∧D2;

• λP2

(
B+
ϕ , r

)
= λP1

(
ζXA (ϕ ∧X) ∧D1, r

)
for all r ∈ (0, 1].

Observe that P1 (ζ (ϕ) ∧ ¬D1) = P2 (ξ (ϕ) ∧ ¬D2), because P1 (ζ (ϕ) ∧D1) = P2 (ξ (ϕ) ∧D2) and

P1 (ζ (ϕ)) = P2 (ξ (ϕ)). So using Proposition 6.1 we can choose B−
ϕ ∈ A2 such that:

• B−
ϕ ⩽ ξ (ϕ) ∧ ¬D2;

• P2

(
B−
ϕ

)
= P1

(
ζXA (ϕ ∧X) ∧ ¬D1

)
.
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Denote B+
ϕ ∨B−

ϕ by Bϕ. Putting the Bϕ’s together, we get

B :=
∨

{Bϕ | ϕ is a basic conjunction over S} .

It is straightforward to check that ξXB is congruent to ζXA .

Corollary 6.3

Let P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ be spaces, S be a finite set of Boolean variables and ζ be a
function from S to A1. Suppose that ♯P1 coincides with ♯P2 . Then there exists a function ξ from S to
A2 such that ζ and ξ are congruent.

Proof. This can easily be shown using Lemma 6.2, by induction on |S|.

We are ready for the most general version of Proposition 5.3:

Proposition 6.4

Let P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ be spaces, Φ be a QPL-formula, ζ and ξ be functions from
FV (Φ) to A1 and A2 respectively. Suppose ζ and ξ are congruent. Then for every function ι from
Fv (Φ) to R,

P1 ⊩ Φ [ζ, ι] ⇐⇒ P2 ⊩ Φ [ξ, ι].

Proof. The argument is like that for Proposition 5.3 except that we replace ‘similar’ by ‘congruent’,

and use Lemma 6.2 instead of Lemma 5.2.

The use of the term ‘elementary invariant’ is justified by:

Theorem 6.5

For any two spaces P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩,

Th (P1) = Th (P2) ⇐⇒ The (P1) = The (P2) ⇐⇒ ♯P1 = ♯P2 .

In particular, two spaces are elementarily equivalent iff their elementary invariants coincide.

Proof. Obviously, Th (P1) = Th (P2) implies The (P1) = The (P2).

Suppose to the contrary that The (P1) = The (P2) but ♯P1 ̸= ♯P2 . The latter means we have

♯P1 (r) ̸= ♯P2 (r) for some r ∈ (0, 1]. Without loss of generality we may assume ♯P1 (r) > ♯P2 (r).

Clearly, there are rational numbers p and q such that p < r < q, and for every s ∈ (p, q),

s ̸= r =⇒ ♯P1 (s) = ♯P2 (s) = 0.

Take N to be ♯P1 (r), and consider the sentence

Φ := ∃X1 . . . ∃XN

(∧N

i=1
(At (Xi) ∧ p < µ (Xi) < q) ∧

∧N−1

i=1

∧N

j=i+1
¬ (Xi ≈ Xj)

)
.

Evidently, P1 ⊩ Φ and P2 ⊮ Φ. Hence The (P1) ̸= The (P2), which is a contradiction.
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Finally, if ♯P1 = ♯P2 , then Proposition 6.4 guarantees that for every QPL-sentence Φ,

P1 ⊩ Φ ⇐⇒ P2 ⊩ Φ,

and thus Th (P1) = Th (P2).

Remark 6.6. Analogous formulations arise in the metamathematics of Boolean algebras; cf. [5].

Although the two lines of research are related, they are in a sense incomparable, since QPL deals

with measures on Boolean algebras of a special kind.

7 Translation

Next we want to adapt the alternative semantics over L provided in Section 4 to deal with spaces

other than L , and translate the new version into the setting of elementary analysis.

We start by showing that each space has the same elementary invariant as some space of a spe-

cial kind, which will be easier to work with. Given r ∈ (0, 1], set

Sr := {A ∈ S | A ⊆ [0, r]}.

Let P = ⟨A ,P⟩ be a probability space. For convenience, we define

h (P) := P≈ (dP)

=
∑

r∈(0,1]
r · ♯P (r).

So h (P) is the measure of the atomic part of P . Call P special if there are an initial segment I of

N+ (i.e. of the positive integers) and a function f from I to (0, 1] such that:

• A is the least σ-algebra containing {{i} | i ∈ I} ∪ S1−h(P);

• for any S+ ⊆ I and S− ∈ S1−h(P),

P
(
S+ ∪ S−) =

∑
i∈S+

f (i) + L
(
S−)

where the empty sum is identified with zero.

Obviously, L is special, with I = f = ∅. In general, every special space is a convex combination

of a discrete spaces and L . Whenever P is special, I and f are uniquely determined by P :

• I equals {1, . . . , |DP |} if DP is finite, and N+ otherwise;

• f is the function from I to (0, 1] that maps each i ∈ I to P ({i}).

Moreover, the collection of all atoms of A then coincides with {{i} | i ∈ I}, and hence

h (P) =
∑
i∈I

f (i).

On the other hand, for every partial function f from N+ to (0, 1], if dom f is an initial segment of

N+ and

∑
i∈I f (i) ⩽ 1, then f determines a unique special space.
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Proposition 7.1

For every space there exists a special space with the same elementary invariant.5

Proof. Let P = ⟨A ,P⟩ be a space. Take

I :=

{1, . . . , |DP |} if DP is finite

N+ otherwise.

So there exists a one-one function g from I onto DP . Define f to be g ◦ P≈ — i.e. f is the function

from I to (0, 1] given by

f (i) := P≈ (g (i)).

Since range f ⊆ (0, 1] and

∑
i∈I f (i) ⩽ 1, we conclude that f determines a (unique) special space.

It is easy to see that this space has the same elementary invariant as P .

Let P = ⟨A ,P⟩ be a special space; take f to be the corresponding partial function from N+ to

(0, 1] and I to be dom f . For convenience, given A ∈ A , we define

A◦ := A ∩ I and A• := A ∩ [0, 1− h (P)].

Intuitively, A◦
is the atomic (discrete) part of A and A•

is its atomless part. So we have

P (A◦) =
∑
i∈A◦

f (i) and P (A•) = L (A•).

Call a Boolean valuation ζ in P compact if for each basic conjunction ϕ over dom ζ , (ζ (ϕ))• is a

subinterval of [0, 1]. Clearly, this extends the definition of compact Boolean valuation in L given

in Section 4. We can then generalize Lemma 4.5 as follows.

Lemma 7.2

Let P = ⟨A ,P⟩ be a special probability space, S be a finite set of Boolean variables, ζ be a compact
function from S to A , and X be a Boolean variable that lies outside S. Then for every A ∈ A there
exists B ∈ A such that ζXB is compact and congruent to ζXA .

Proof. Consider an arbitrary A ∈ A . For each basic conjunction ϕ over S, denote the infimum of

(ζ (ϕ))• in R by aϕ, and set

Cϕ := (ζ (ϕ))• ∩
[
0, aϕ + L

((
ζXA (ϕ ∧X)

)•)]
— so in particular, Cϕ ∈ S1−h(P) and L (Cϕ) = L

((
ζXA (ϕ ∧X)

)•)
. Take

B := A◦ ∪
⋃

{Cϕ | ϕ is a basic conjunction over S}.

It is easy to see that ζXB has the required properties.

5
Furthermore, this special space will be unique if we require that the corresponding f be non-increasing.
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Corollary 7.3

Let P = ⟨A ,P⟩ be a special space, S be a finite set of Boolean variables and ζ be a function from S

to A . Then there exists a compact function ξ from S to A such that ζ and ξ are congruent.

Proof. This can easily be shown using Lemmas 6.2 and 7.2, by induction on |S|.

Fix a special probability space P = ⟨A ,P⟩. For any normal QPL-formula Φ, compact function

ζ from FV (Φ) to A and function ι from Fv (Φ) to R, the definition of P ▷ Φ [ζ, ι] is like that of

L ▷ Φ [ζ, ι] except that we use the extended notion of compact Boolean valuation. Again, it turns

out that the alternative semantics is equivalent to the usual one:

Proposition 7.4

Let P = ⟨A ,P⟩ be a special space, and Φ be a normal QPL-formula. Then for any compact function
ζ from FV (Φ) to A and function ι from Fv (Φ) to R,

P ⊩ Φ [ζ, ι] ⇐⇒ P ▷ Φ [ζ, ι] .

Proof. The argument is like that for Proposition 4.7 except that we replace ‘similar’ by ‘congruent’,

and use Lemma 7.2 instead of Lemma 4.5 and Proposition 6.4 instead of Proposition 4.4.

Finally, we are ready to adapt the translation τ described in Section 4 to deal with spaces other

than L . The output language will be that of elementary analysis, which contains not only quan-

tifiers over reals but also quantifiers over natural numbers. This language has the same expressive

power as that of second-order arithmetic, and furthermore, sequences of reals and the concept of

limit are representable in it; see, e.g., [9, Chapter 16] and [11, Chapter II]. We shall write R2
for the

standard model of elementary analysis.

Let P = ⟨A ,P⟩ be a special space. So P is determined by a suitable f ; take I to be dom f . To

work with the atomic part of P , we introduce the list

p := ⟨pi⟩i∈I

of fresh field variables. Intuitively, we associate with each pi the real number f (i). If I = N+, and

one wants to avoid using infinitely many variables, then p may be replaced by a function variable

ranging over functions from N+ to R. Now consider a normal QPL-sentence Φ. The notation of

Section 4 will be adopted to handle the atomless part of our coding. As for its atomic part, given a

Boolean variable X occurring in Φ, we set

X := ⟨eX,i⟩i∈I

where the eX,i’s are fresh field variables. The intuition is that each eX,i corresponds to{i} if eX,i = 1

∅ otherwise.
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Now let S be a finite set of variables. We use S to abbreviate ⟨S⟩X∈S . Roughly speaking, S and S

determine the function ζ from S to A given by

ζ (X) :=

ℓ(X)⋃
i=1

AX,i ∪ {i ∈ I | eX,i = 1}.

— cf. Section 4. For each function δ from S to {0, 1} we introduce the formulas

E•δ (x, S, p) := the result of replacing 0 ⩽ x ⩽ 1 in Eδ (x, S) by 0 ⩽ x ⩽ 1−
∑

i∈I pi,

I•δ (a, b, S, p) := the result of replacing Eδ (x, S) in Iδ (a, b, S) by E•δ (x, S, p).

Intuitively, if S and S determine ζ , then

E•δ (x, S, p) says ‘x belongs to

(
ζ
(∧δ

S
))•

’,

I•δ (a, b, S, p) says ‘

(
ζ
(∧δ

S
))•

is a subinterval of [0, 1] with endpoints a and b’.

Therefore the condition ‘ζ is compact’ can be expressed by

C• (S) :=
∧

δ∈{0,1}S
∃a∃b I•δ (a, b, S).

In addition, we introduce the term

tδ
(
S, p

)
:=

∑
i∈I

(
pi ·

∏
X∈S

(δ (X) · eX,i + (1− δ (X)) · (1− eX,i))
)
.

It is easy to verify that

tδ
(
S, p

)
represents P

((
ζ
(∧δ

S
))◦)

,

provided that the eX,i’s take their values in {0, 1}. Moreover, for each X ∈ S, to ensure that the

field variables in X and X behave as expected, we need

Q
(
X,X, p

)
:=

∧ℓ(X)

n=1
0 ⩽ aX,n ⩽ bX,n ⩽ 1−

∑
i∈I

pi ∧∧
i∈I

(eX,i = 0 ∨ eX,i = 1).

And of course, p must be such that

A (p) :=
∧

i∈I
0 < pi ⩽ 1 ∧

∑
i∈I

pi ⩽ 1.

We shall call a list ⟨ri⟩i∈I of reals acceptable if it satisfies A (p) in R2
. Obviously, f = ⟨f (i)⟩i∈I is

acceptable. Using these first-order formulas, Φ can be translated into τI (Φ) as follows.
6

6
In our translation, I is used explicitly, while f plays the role of an external parameter.
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• Letting Ψ be the quantifier-free part of Φ, define

Ψ∗
I := ∃a1 ∃b1 . . . ∃a2|S| ∃b2|S|

(∧2|S|

i=1
I•δi (ai, bi, S, p) ∧Ψ

)
where S = FV (Ψ), {δ1, . . . , δ2|S|} = {0, 1}S , and Ψ is the result of replacing each µ-term

µ
(∧δi S

)
by (bi − ai) + tδi

(
S, p

)
.

• Next, for each subformula Θ of Φ beginning with a quantifier, we recursively define

Θ∗
I :=


∃X ∃X

(
Q
(
X,X, p

)
∧ C• (S) ∧ Ω∗

I

)
if Θ = ∃X Ω

∀X ∀X
(
Q
(
X,X, p

)
∧ C• (S) → Ω∗

I

)
if Θ = ∀X Ω

∃xΩ∗
I if Θ = ∃xΩ

∀xΩ∗
I if Θ = ∀xΩ

where S = FV (Ψ). Now set τI (Φ) to be Φ∗
I .

Evidently, the variables that occur free in τI (Φ) are the pi’s. It is straightforward to verify that the

following generalization of Proposition 4.8 holds.

Proposition 7.5

Let P = ⟨A ,P⟩ be a special space, f and I be as above. Then for every normal QPL-sentence Φ,

P ▷ Φ ⇐⇒ τI (Φ)
[
p/f

]
is true in R2

where τI (Φ)
[
p/f

]
is obtained from τI (Φ) by substituting f for p.

Proof. The argument is analogous to that for Proposition 4.8, via the extended definition of ▷.

In the next section we shall apply Proposition 7.5 to derive further decidability results and also

to solve one of the main problems of [16].

8 Some further applications

For each N ∈ N, take

KN := {P | P is a probability space and |DP | = N}.

Thus P = ⟨A ,P⟩ belongs to KN iff A≈ contains exactly N atoms.

Theorem 8.1

Th (KN) is decidable, for any N ∈ N.
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Proof. Take I to be {1, . . . , N}. Given a QPL-formula Φ, define Φ′
as in the proof of Theorem 4.1.

Now for every QPL-sentence Φ,

Φ ∈ Th (KN) ⇐⇒ Φ′ ∈ Th (KN)

7.1, 6.5⇐⇒ P ⊩ Φ′
for all special P ∈ KN

7.4⇐⇒ P ▷ Φ′
for all special P ∈ KN

7.5⇐⇒ τI (Φ
′) is true in R2

for all acceptable values of p

⇐⇒ ∀p (A (p) → τI (Φ
′)) is true in R2.

Clearly, since I is finite, we can treat ∀p (A (p) → τI (Φ
′)) as a sentence in the first-order language

of R. Hence the QPL-theory of KN is reducible to the first-order theory of R.

Here is another easy application. We call a space P = ⟨A ,P⟩ algebraic iff for every A ∈ DP ,

P≈ (A) is an algebraic real number.

Proposition 8.2

Let P = ⟨A ,P⟩ be an algebraic space in KN , where N ∈ N. Then Th (P) is decidable.

Proof. By Proposition 7.1 and Theorem 6.5, we may assume P is special. So P is determined by a

suitable f ; take I to be dom f , which coincides with {1, . . . , N}.

Observe that for each i ∈ I , since P (f (i)) is an algebraic real number, there are a polynomial

gi (x) with integer coefficients and rational numbers pi, qi such that for every r ∈ R,

r = P (f (i)) ⇐⇒ gi (r) = 0 and pi < r < qi.

Notice that each pi < pi < qi can be treated as a formula in the first-order language of R, because

all rational numbers are definable in R. So the formula

B (p) :=
∧

i∈I
(gi (pi) = 0 ∧ pi < pi < qi)

defines f in R. Then by an argument similar to that for Theorem 8.1, we have that for every QPL-

sentence Φ,

P ⊩ Φ ⇐⇒ ∀p (B (p) → τI (Φ
′)) is true in R.

Hence the QPL-theory of P is decidable.

Remark 8.3. On the other hand, as was proved in [16, Section 2], it is not hard to build an infinite

discrete space P = ⟨A ,P⟩ such that:

• for every A ∈ DP , P≈ (A) is a rational number;

• complete second-order arithmetic is reducible to The (P).

So in Proposition 8.2, the condition that |DP | <∞ cannot, in general, be weakened.
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As was shown in [16, Section 2], there are many QPL-theories that are at least as complex as

complete second-order arithmetic — or equivalently, the theory of R2
. We are going to prove that

this upper bound is precise for a rich variety of classes of spaces. Given a space P , define

[P] := {P ′ | ♯P′ = ♯P and P ′
is special}.

By Proposition 7.1, [P] is non-empty, and therefore Th (P) = Th ([P]) by Theorem 6.5. We also

set

JPK := {f | f determines some P ′ ∈ [P]} .

Elements of JPK may be thought of as codes for P . We extend [·] and J·K to classes of probability

spaces as follows:

[K] :=
⋃

P∈K

[P] and JKK :=
⋃

P∈K

JPK.

Notice that [K] has the same QPL-theory as K:

Th (K) =
⋂

P∈K

Th (P) =
⋂

P∈K

Th ([P]) = Th ([K]).

We say that a class K of spaces is analytical if JKK is definable in R2
(as a set of partial functions

from N+ to (0, 1]).

Theorem 8.4

Let K be an analytical class of spaces. Then Th (K) is reducible to complete second-order arithmetic.

Proof. The translation described in Section 7 can easily be modified in such a way that I becomes

a set variable ranging over initial segments of N+, and every list of field variables indexed by I —

such as p or an X — is treated as a function variable ranging over functions from I to R. For the

modified version we shall write τ (I,Φ) instead of τI (Φ).

Take Θ (F ) to be a formula that defines JKK in R2
, where F is a function variable ranging over

partial functions from N+ to R. Given a QPL-formula Φ, define Φ′
as in the proof of Theorem 4.1.

Then for every QPL-sentence Φ,

Φ ∈ Th (K) ⇐⇒ Φ′ ∈ Th (K)

⇐⇒ Φ′ ∈ Th ([K])

7.4⇐⇒ P ▷ Φ′
for all P ∈ [K]

7.5⇐⇒ τ (I,Φ′) [p/f, I/dom f ] is true in R2
for all f ∈ JKK

⇐⇒ ∀I ∀p (Θ (p) → τ (I,Φ′)) is true in R2.

Therefore Th (K) is reducible to the theory of R2
, which is equivalent to complete second-order

arithmetic.

Remark 8.5. The analogue of Theorem 8.4 for analytical classes of discrete spaces can be proved

in a much more direct way, since discrete spaces — unlike arbitrary ones — can be easily encoded

in the language of second-order arithmetic; cf. the proof of [16, Lemma 2.2].
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Combining this with a complexity result from [16, Section 2], we get:

Theorem 8.6

Let K be an analytical class of spaces. Suppose that K contains all infinite discrete spaces. Then both
The (K) and Th (K) are equivalent to complete second-order arithmetic.

Proof. Immediate from Theorems 2.2 and 8.4.

In particular, Theorem 8.6 applies to the class of all spaces and to the class of all infinite spaces,

which solves one of the main problems of [16].

Remark 8.7. One may try to prove Theorem 8.4 in a somewhat different way, by identifying each

space with its elementary invariant (which is justified by Theorem 6.5) and directly translating ⊩

into the language of R2
, without using the alternative semantics. But even if we succeed in doing

this, quantifiers over S (and its subalgebras) will be translated as set quantifiers; thus we shall not

be able to obtain decidability results like Theorem 8.1 and Proposition 8.2. Therefore the notion of

compact valuation and the relation ▷ are essential here.
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Appendix

Proof of Proposition 5.1. If P (A) = 0, then the result is trivial. Suppose A has positive measure, i.e.

P (A) > 0. Take AA to be {B ∈ A | B ⩽ A}, and define PA : AA → [0, 1] by

PA (B) :=
P (B)

P (A)
.
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Evidently, PA = ⟨AA,PA⟩ is also an atomless space, and it suffices to show that

{PA (B) | B ∈ AA} = [0, 1].

To sum up, the original formulation of Proposition 5.1 is equivalent to the following one: for each

atomless space P ,

{P (A) | A ∈ A } = [0, 1].

Before proving this, let us make two observations:

1. if P = ⟨A ,P⟩ is an atomless space, and A ∈ A has positive measure, then for every n ∈ N
there exists B ∈ A such that B ⊆ A and 0 < P (B) ⩽ 1/2n;

2. if S is an uncountable set, and f is a function from S to R+ (i.e. to the set of all positive real

numbers), then there exists a countable U ⊆ S such that

∑
s∈U f (s) = ∞.

Here (1) can be easily proved by induction on n, and (2) is a basic fact from analysis.

Let P = ⟨A ,P⟩ be an atomless space. Consider an arbitrary r ∈ [0, 1]. We aim to find A ∈ A

such that P (A) = r. The cases where r is 0 or 1 are trivial. Suppose 0 < r < 1. Then we define

ρ : Ord → A by transfinite recursion as follows.
7

• If α is at most countable, and P
(∨

β<α ρ (β)
)
= r, then set ρ (α) := ⊥.

• If α is at most countable, and P
(∨

β<α ρ (β)
)
< r, then define ρ (α) to be some B ∈ A such

that

B ∧
∨

β<α
ρ (β) = ∅ and 0 < P (B) ⩽ r − P

(∨
β<α

ρ (β)
)
,

whose existence is guaranteed by (1).

• If α is uncountable, then set ρ (α) := ⊥.

Notice that for each finite or countable ordinal α, the members of ⟨ρ (β)⟩β<α are pairwise disjoint,

and their sum is less than or equal to r. Now take

S := {α ∈ Ord | ρ (α) ̸= ⊥}.

Obviously, we have P (ρ (α)) > 0 for all α ∈ S. So by (2), S must be at most countable (since one

may define the function f from S to R+ by f (α) = P (ρ (α)). Moreover, S is an initial segment of

Ord, and hence an ordinal. Finally, we observe that

P
(∨

α∈S
ρ (α)

)
= r,

for otherwise ρ (S) would not be equal to ⊥, i.e. S would belong to S.

7
Here Ord denotes the class of all ordinals.
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