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Abstract

We shall be concerned with two natural expansions of the quantifier-free ‘polynomial’ pro-

bability logic of [3]. One of these, denoted by QPLe, is obtained by adding quantifiers over ar-

bitrary events, and the other, denoted by QPLe, uses quantifiers over propositional formulas —

or equivalently, over events expressible by such formulas. The earlier proofs of the complexity

lower bound results for QPLe and QPLe relied heavily on multiplication, and therefore on the

polynomiality of the basic parts. We shall obtain the same lower bounds for natural fragments

of QPLe and QPLe in which only linear combinations of a very special form are allowed. Also,

it will be studied what happens if we add quantifiers over reals.
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1 Introduction

In their famous article [3], Fagin, Halpern and Megiddo considered two quantifier-free languages

for reasoning about probabilities. The larger of these, which we shall call ‘polynomial’ and denote

by Lpoly, deals with Boolean combinations of expressions of the form

f (µ (ϕ1), . . . , µ (ϕm)) ⩽ g (µ (ψ1), . . . , µ (ψn)).

where f , g are polynomials with integer coefficients, and ϕ1, . . . , ϕm, ψ1, . . . , ψn are propositional

formulas. The structures for Lpoly — or measurable probability structures, in the terminology of [3]

— are the tuples

⟨⟨A ,P⟩, π⟩

where ⟨A ,P⟩ is a probability space, and π is a function from the set of propositional variables to

A . Briefly, given a Lpoly-structure, we first need to extend π to handle all propositional formulas

in the natural way, and then interpret each µ (ϕ) as P (π (ϕ)). The smaller language, which we call

‘linear’ and denote by Llin, is obtained from Lpoly by excluding multiplication; so Llin is the linear

fragment of Lpoly. Moreover, as was suggested in [3], one may expand Lpoly by adding quantifiers

over reals. We write L∗
poly for this richer language.

The validity problem for L∗
poly can be easily reduced to the membership problem for the first-

order theory of the ordered field of reals, which was shown to be decidable by Tarski [22]. But if

we want to analyze the algorithmic complexity of the validity problems for L∗
poly, Lpoly and Llin in

terms of polynomial-time reducibility, this does not give us much. Some nice complexity results —

as well as certain axiomatizability results — were derived in [3]; see also [11]. In particular, the sa-

tisfiability problem for Llin is NP-complete, while those for Lpoly and L∗
poly belong to PSpace and

ExpSpace respectively.
1

Compare [6], [8] and [10, Chapter 3], where similar but somewhat weaker

probability logics are examined.

The above three languages can be enriched in different ways, and may often be viewed as frag-

ments of other probability logics. For instance, following [1], one can modify L∗
poly by taking the

underlying language (over the formulas of which measures are distributed) to be first-order rather

than propositional, and adding quantifiers over elements of a given domain; see [10] for a related

probability logic having no quantifiers over reals.
2

Alternatively, we can keep the underlying lan-

guage unchanged and add new quantifiers directly to Lpoly or L∗
poly, as was done in [15] and [19].

The present article is concerned with the latter approach. Notice that probability logics containing

quantifiers other than those over reals tend to be far from decidable — so their complexity should

1
In fact, it would be more accurate to use the complexity class ∃R instead of PSpace; cf. [6]. Evidently, in all three

languages, a formula is valid iff its negation is not satisfiable.

2
The reader might be wondering why quantifiers over reals are avoided in the systems developed by Ognjanović

and his colleagues, who are often concerned with axiomatizations (somewhat similar to those provided in [5] and [7]).

Technically, the reason is that probability logics with both quantifiers over reals and some other sort of quantifiers are

usually at least as complex as complete second-order arithmetic; cf. [1]. This implies that such logics are not axiomati-

zable by means of reasonable infinitary calculi, which can only handle Π1
1-sets; see [9] for details.
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be analyzed using degrees of undecidability, in terms of reducibility by means of total computable

functions.

Following [15], consider the expansion QPLe of Lpoly obtained by adding quantifiers over pro-

positional formulas — these may be thought of as countable conjunctions of a special kind, but we

need to keep the syntax finitary. Of course, the structures for QPLe are the same as those for Lpoly.

As was shown in [16, Section 4], for any sufficiently large class of such structures, its QPLe-theory

is Π1
1-hard. The corresponding proof relied heavily on multiplication, and therefore on the polyno-

miality of the basic part. There, the natural numbers were interpreted as a distinguished sequence

E0, E1, . . . of events, whose measures form a geometric progression, e.g.

P (En) =
1

2n+1
for each n ∈ N;

cf. the proofs in [1]. Obviously, for all i, j, n ∈ N,

i+ j = n ⇐⇒ 2 · 1

2i+1
· 1

2j+1
=

1

2n+1
.

This allows us to interpret addition on N by using multiplication on probabilities; then we aim to

apply Halpern’s result from [4]. Such reasoning fails if we restrict ourselves to linear terms. In this

article, by providing a more complicated and advanced argument (not related to [4]) we are going

to obtain Π1
1-hardness for a natural fragment of QPLe in which only linear combinations of a very

special form are admitted. Also, we analyze the complexity of the language QPL expanding QPLe

by adding quantifiers over reals, which has not been studied before — this leads to the complexity

of complete second-order arithmetic, instead of its Π1
1-part. Here the upper bound is obtained by a

rather general argument, which can be applied to different classes of QPL-structures.

Next, a variant L′
poly of Lpoly can be obtained by replacing propositional variables by ‘Boolean

variables’, intended to range over A . Intuitively, the difference between Lpoly and L′
poly is that in

Lpoly, propositional variables are treated as Boolean constants, rather than Boolean variables. This

is not essential to the description of Lpoly, but it suggests another way of expanding Lpoly, namely

by adding quantifiers over arbitrary events, as in [19]. We write QPLe for the resulting expansion,

and QPL for the even richer language with quantifiers over reals; see also [21].
3

As was shown in

[19, Section 2], for every sufficiently large class of probability spaces, its QPLe-theory is at least as

complex as complete second-order arithmetic; a general upper bound argument for both QPLe and

QPL has recently been given in [21]. But the lower bound argument again relied heavily on multi-

plication, using a suitable generalization of Halpern’s result from [17, Section 3]. We are going to

show that the corresponding hardness result remains true if we restrict ourselves to special linear

combinations, like in QPLe. At this point it might be helpful to represent the relationship between

the probabilistic languages mentioned above:

3
These two can be viewed as elementary languages for reasoning about probability spaces; cf. [14] and other work

on elementary theories, e.g. [2], [22] and [23].
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Lpoly

L∗
polyQPLe

QPL

QPLe

QPL

Here an arrow from one language to another indicates that the latter expands (conservatively) the

former. Notice that QPL and QPL are incomparable, according to the diagram: though the syntax

of QPL extends that of QPL, the semantics of quantifiers in QPL differs from that in QPL.

The present work may be compared — or contrasted — with [3] and [6]. For instance, in terms of

polynomial-time reducibility, there should be a big difference between Llin, Lpoly and L∗
poly, but not

between Llin and certain more restrictive languages. As for the quantified probability logics under

consideration, it will be proved that that there is no difference between the polynomial, linear and

certain sublinear versions of a given logic; adding quantifiers over reals leads to higher degrees of

undecidability in the case of quantifiers over propositional formulas, but not in that of quantifiers

over events.

The rest of the article is organized as follows. In Section 2, we define the expansions QPL and

QPLe; Section 3 explains why we can safely pass from each probability space to the corresponding

quotient space modulo events of measure zero. In Section 4, we define QPL and QPLe. Sections 5

and 6 contain some technical material on the analytical hierarchy. In Section 7 we show how the

earlier hardness results for QPLe and QPL can be strengthened, without any use of multiplication.

Section 7 does a similar job for quantifiers over propositional formulas. Finally, Section 9 provides

general upper bound arguments for QPL and QPLe.

2 Quantifying over events

By a probability space, or simply a space, we mean a pair ⟨A ,P⟩ where:

• A is a σ-algebra, i.e. a Boolean algebra in which every countable set of elements has a sup-

remum (and hence an infimum);

• P is a probability measure on A , i.e. a function from A to [0, 1] such that for every sequence

A0, A1, . . . of pairwise disjoint elements of A ,

P
(∨

n∈N
An

)
=

∑
n∈N

P (An),

and P (⊤) = 1 where ⊤ denotes the greatest element of A .

Elements of A are called events, which are measurable with respect to P. Note, in passing, that the

countable additivity of P readily implies P (⊥) = 0 where ⊥ is the least element of A .

5



Since the very definition of a space involves two different sorts of object, our formal language

QPL includes two disjoint countable sets of variables:

Var := {X, Y, Z, . . . } and var := {x, y, z, . . . }.

Elements of Var are intended to range over events, and called Boolean variables, while those of var

are intended to range over reals, and called field variables. This in turn suggests considering two

sets of function symbols:

{⊥,⊤,∧,∨,¬} and {0, 1,+, · ,−},

viz. the symbols of the language of Boolean algebras and those of the language of fields. In addition

to these, we need a special symbol µ to denote a probability measure.

The Boolean terms are build up from ⊥, ⊤ and the Boolean variables by use of ∧, ∨ and ¬:

• if ϕ1 and ϕ2 are Boolean terms, so are ϕ1 ∧ ϕ1 and ϕ1 ∨ ϕ2;

• if ϕ is a Boolean term, so is ¬ϕ.

Naturally, they represent Boolean combinations of events. By a µ-term we mean an expression of

the form µ (ϕ) where ϕ is a Boolean term. The field terms are built up from 0, 1, the field variables

and the µ-terms by use of +, · and −. Briefly, each field term can be represented as

f (x1, . . . , xm, µ (ϕ1), . . . , µ (ϕn))

where f is a polynomial with integer coefficients, x1, . . . , xm are field variables, and ϕ1, . . . , ϕn are

Boolean terms. Now by a basic QPL-formula we mean an expression of the form t1 ⩽ t2 where t1

and t2 are field terms.

We shall use ∧, ∨ and ¬ to denote the Boolean operations as well as the ordinary logical con-

nectives. Since their Boolean versions will not occur outside the scope of µ, the interpretations of

∧, ∨ and ¬ will always be clear from the context. Taking the quantifier symbols to be ∀ and ∃, the

QPL-formulas are built up from the basic QPL-formulas in the customary way. We shall adopt the

following abbreviations:

t1 < t2 := t1 ⩽ t2 ∧ ¬t2 ⩽ t1;

t1 = t2 := t1 ⩽ t2 ∧ t2 ⩽ t1;

t1 ̸= t2 := ¬t1 = t2.

Further, if Φ and Ψ are QPL-formulas, we shall often write Φ → Ψ and Φ ↔ Ψ instead of ¬Φ ∨ Ψ

and (Φ → Ψ) ∧ (Ψ → Φ) respectively. Given a QPL-formula Φ, define Free (Φ) to be the set of all

variables (of any of the two sorts) that occur free in Φ. Call Φ a QPL-sentence if Free (Φ) = ∅.

The satisfiability relation ⊩ for QPL can be defined in the obvious way, and it behaves like one

would expect. In more detail, let P = ⟨A ,P⟩ be a space. Then for any QPL-formula Φ, function ζ

from Var to A and function ι from var to R, we define

P ⊩ Φ [ζ, ι]
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by induction on Φ, as in two-sorted first-order logic. Clearly, it does not matter what values ⟨ζ, ι⟩
assigns to (Var ∪ var) \ Free (Φ). In particular, if Φ is a sentence, we may write P ⊩ Φ instead of

P ⊩ Φ [ζ, ι]. For example, consider

Θ := ∀x (0 ⩽ x ⩽ 1 → ∃X x = µ (X)).

Then P ⊩ Θ iff for every r ∈ [0, 1] there exists A ∈ A such that P (A) = r.

Let QPLe be the sublanguage of QPL obtained by excluding field variables, and hence quanti-

fiers over reals. We shall write Sent and Sente for the collections of all sentences in QPL and QPLe

respectively. Then, given a class K of spaces, define the QPL-theory of K to be

Th (K) := {Φ ∈ Sent | A ⊩ Φ for all A ∈ K}.

The QPLe-theory of K, written The (K), is defined similarly. In general, QPL-theories tend to have

very high degrees of undecidability, even without quantifiers over reals.

Say that a class of probability spaces is rich iff it contains all infinite discrete spaces. Using an

alternative description of the analytical hierarchy given in [17, Section 3], we can derive:

Theorem 2.1 (see [19, Section 2])

Let K be a rich class of spaces. Then complete second-order arithmetic — i.e. the second-order theory of
the standard model of arithmetic — is reducible to the QPLe-theory of K.4

On the other hand, as has been shown in [21, Section 6], with each probability space, one can

associate a suitable subset of N. Call a class of spaces analytical iff the corresponding collection of

subsets of N is second-order definable in the standard model of arithmetic.

Theorem 2.2 (see [21])

Let K be an analytical class of spaces. Then the QPL-theory of K is reducible to complete second-order
arithmetic.

This covers a wide range of classes of spaces. Interestingly, the corresponding reduction can be

adapted to derive some decidability results or to obtain smaller upper bounds for certain non-rich

classes. For instance, the QPL-theory of the class of all atomless spaces turns out to be decidable.

Those who would like to know more should consult [21].

Remark 2.3. The fragment of QPL in which quantifiers over events are not allowed — but those

over reals are legal — might be viewed as the ‘polynomial’ logic described earlier in [3, Section 6],

viz. L∗
poly. Similarly for the language QPL, which will be discussed in Section 4.

3 Passing to quotients

Two spaces P1 = ⟨A1,P1⟩ and P2 = ⟨A2,P2⟩ are called isomorphic if there exists f : A1 → A2

such that:

4
For more on second-order arithmetic, see Section 5.
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• f is an isomorphism of A1 onto A2, thought of as Boolean algebras;

• P1 (A) = P2 (f (A)) for all A ∈ A1.

The notion of isomorphism may be relaxed in the following way. Consider the QPL-formula

X ≈ Y := µ ((X ∧ ¬Y ) ∨ (Y ∧ ¬X)) = 0.

Let P = ⟨A ,P⟩ be a space. Evidently, X ≈ Y defines (in P) a very natural equivalence relation

on A , namely

E := {(A1, A2) ∈ A × A | P ⊩ A1 ≈ A2}.

In particular, E turns out to be a congruence relation on A . For each A ∈ A , denote by [A]≈ the

equivalence class of A under E , i.e.

[A]≈ := {B ∈ A | (A,B) ∈ E }.

Now take A≈ to be the collection of all such classes — or rather, the quotient Boolean algebra of A

modulo E — and define P≈ : A≈ → [0, 1] by

P≈ ([A]≈) := P (A)

(note that P (A) = P (B) for all B ∈ [A]≈). It is easy to check that P≈ = ⟨A≈,P≈⟩ is a probability

space, called the quotient space of P modulo events of measure zero. Moreover, one can show that

for any QPL-formula Φ, function ζ from Var to A and function ι from var to R,

P ⊩ Φ [ζ, ι] ⇐⇒ P≈ ⊩ Φ [ζ≈, ι]

where ζ≈ is the mapping from Var to A≈ given by

ζ≈ (X) := [ζ (X)]≈.

Finally, we call P1 and P2 weakly isomorphic if (P1)≈ and (P2)≈ are isomorphic. Consequently,

if two spaces are weakly isomorphic, then their QPL-theories coincide.

Let P = ⟨A ,P⟩ be a space. Now if P ⊩ A1 ≈ A2, i.e. the symmetric difference of A1 and A2

has measure zero, then A1 and A2 are indistinguishable in P by QPL-formulas (with parameters).

So definability in P reduces to definability in P≈. For instance, consider

X ≼ Y := X ∧ Y ≈ X.

Obviously, P ⊩ A1 ≼ A2 iff [A1]≈ is less than or equal to [A2]≈ in the Boolean algebra A≈. Next,

take

At (X) := µ (X) ̸= 0 ∧ ∀Y (µ (Y ) ̸= 0 ∧ Y ≼ X → Y ≈ X).

Clearly, P ⊩ At (A) iff [A]≈ is an atom of A≈ — in other words, [A]≈ is minimal in A≈ \ {[⊥]≈}.

The formula At (X) will play an important role in our lower bound arguments.
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4 Quantifying over propositional formulas

Next, we describe a variation QPL on QPL in which quantifiers over events are replaced by those

over ‘propositional formulas’. The syntax of QPL extends that of QPL by adding countably many

Boolean constants, called propositional variables:

p, q, r, . . .

Denote by Prop the set of all these constants. Then the notion of Boolean term is modified in the

obvious way. Of course, closed Boolean terms may be called propositional formulas in this context.

Take Term◦
to be the set of all these terms. Roughly, in QPL we have

∀X Φ ↔
∧

ϕ∈Term◦

Φ (X/ϕ) and ∃X Φ ↔
∨

ϕ∈Term◦

Φ (X/ϕ)

where Φ (X/ϕ) is the result of replacing all free occurrences of X in Φ by ϕ. To make this precise,

one can modify the notion of a space.

By an expanded space we mean a tuple ⟨⟨A ,P⟩, π⟩ where ⟨A ,P⟩ is a space and π is a function

from Prop to A .
5

Such spaces have been widely employed in probability logic — in particular, in

[3] they are called measurable probability structures. In QPL the Boolean variables are intended to

range over

A π := {π (ϕ) | ϕ ∈ Term◦},

rather than the whole of A . Hence if we want to adapt the material of Section 3 to QPL, then A

has to be replaced by A π
throughout. The symbol ⊩ will be used for satisfiability in both QPL and

QPL — but this should cause no confusion.
6

Naturally, since Term◦
is countable, one might expect

QPL to be less expressive than QPL, at least without quantifiers over reals: quantifiers in QPL are

somewhat similar to those over N, not over the power set of N.

Let QPLe be the sublanguage of QPL obtained by excluding field variables. We shall write Sent

and Sente for the collections of all sentences in QPL and QPLe respectively. Then, given a class K
of expanded spaces, define the QPL-theory of K to be

Th (K) := {Φ ∈ Sent | A ⊩ Φ for all A ∈ K}.

The QPLe-theory of K, written The (K), is defined similarly.

Say that a class of expanded probability spaces is rich iff it contains all expanded spaces of the

form ⟨P, π⟩ where P is an infinite discrete space. Utilizing the result of [4], we can derive:

Theorem 4.1 (see [16, Section 4])

Let K be a rich class of expanded spaces. Then the QPLe-theory of K is Π1
1-hard.

5
By analogy with Boolean valuations, π can be extended to deal with all propositional formulas.

6
However, we need to keep in mind that QPL is not a (conservative) expansion of QPL. For instance, the sentence

∀x (0 ⩽ x ⩽ 1 → ∃X x = µ (X)) is satisfiable in QPL but not in QPL.
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This bound is known to be precise in the case of all expanded spaces and some other cases. A

general upper bound argument will be presented in Section 9.

Clearly, each expanded space A = ⟨⟨A ,P⟩, π⟩ induces the pair ⟨A π,Pπ⟩ where Pπ
denotes the

restriction of P to A π
. Further, we can pass from Pπ

to the function pA from Term◦
to [0, 1] given

by

pA (ϕ) := P (π (ϕ)).

Let us call f : Term◦ → [0, 1] acceptable iff f (⊤) = 1 and for any ϕ, ψ ∈ Term◦
:

• if ϕ and ψ are logically equivalent, then f (ϕ) = f (ψ);

• f (ϕ) = f (ϕ ∧ ψ) + f (ϕ ∧ ¬ψ)

(cf. the axioms for reasoning about probabilities provided in [3, Section 2.2]). Clearly, pA is always

acceptable. The converse also holds, as is easily verified:

Proposition 4.2

For every acceptable f : Term◦ → [0, 1] there exists an expanded space A such that pA = f .

Thus, instead of expanded spaces, we can work with acceptable functions.

Remark 4.3. Originally, QPLe was introduced in [15], as a natural expansion of the quantifier-free

‘polynomial’ logic described in [3, Section 5], viz. Lpoly. Unlike the languages studied in [1], QPLe

— as well as QPL — keeps the underlying logic (inside the scope of µ) propositional and does not

depend on the choice of external signature.

5 Concerning second-order arithmetic

Remember, in second-order arithmetic we have:

• individual variables x, y, z, . . . , intended to range over N;

• for each k ∈ N+, k-ary set variables Xk
, Y k

, Zk
, . . . , intended to range over the subsets of Nk

— i.e. over the k-ary relations on N.
7

Let N be the standard model of Peano arithmetic and σ be its signature (i.e. the corresponding list

of function and predicate symbols). To make things precise, assume that

σ := ⟨0, s,+, · ; =⟩.8

The atomic second-order σ-formulas are the identities between σ-terms plus the expressions of the

form

Xk (t1, . . . , tk)

7
Here N+ denotes N \ {0}, i.e. {1, 2, . . .}.
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where k ∈ N+, Xk
is a k-ary set variable and t1, . . . , tk are σ-terms. More complicated second-order

σ-formulas are built up from these in the usual way. In what follows by a formula we shall mean a

second-order formula, unless otherwise specified.

Before proceeding, let us bring in some concepts from computability theory. Given A,B ⊆ N,

we say that A is reducible to B, written A ⩽ B, iff there exists a computable f : N → N such that

for every m ∈ N,

m ∈ A ⇐⇒ f (m) ∈ B.

Further, A and B are equivalent, written A ≡ B, iff they are reducible to each other.

Let n ∈ N+. Recall that a σ-formula is in Π1
n iff it has the form

∀X⃗1 ∃X⃗2 . . . X⃗n︸ ︷︷ ︸
n−1 alternations

Ψ

where X⃗1, X⃗2, . . . , X⃗n are tuples of set variables and Ψ contains no set quantifiers. Then A ⊆ N is:

• Π1
n-bounded iff A can be defined in N by a Π1

n-formula;

• Π1
n-hard iff every Π1

n-bounded subset of N is reducible to A;

• Π1
n-complete iff it is both Π1

n-bounded and Π1
n-hard.

Traditionally, Π1
n-bounded sets are called Π1

n-sets.

For each n ∈ N+, denote by Π1
n-Th (N) the collection of all Π1

n-sentences true in N. We write

Th (N) for the full second-order theory of N, or complete second-order arithmetic. Naturally, given

a reasonable coding of σ-formulas, we may identify σ-sentences with their codes.

Folklore 5.1 (see [13, Chapter 16])

Let n ∈ N+. Then for every A ⊆ N:

A ⩽ Π1
n-Th (N) ⇐⇒ A is Π1

n-bounded;

Π1
n-Th (N) ⩽ A ⇐⇒ A is Π1

n-hard;

Π1
n-Th (N) ≡ A ⇐⇒ A is Π1

n-complete.

Inspired by these equivalences, we shall say that A ⊆ N is Π1
∞-bounded, Π1

∞-hard or Π1
∞-com-

plete iff A ⩽ Th (N), Th (N) ⩽ A or A ≡ Th (N) respectively.

Folklore 5.2 (see [13, Chapter 16].)

Every σ-formula can be effectively converted to an equivalent Π1
n-formula, for a suitable n ∈ N+. So

the union of the sets Π1
1-Th (N), Π1

2-Th (N), . . . is Π1
∞-complete, i.e.

Th (N) ≡
⋃

n∈N+

Π1
n-Th (N).

8
Alternatively, we may assume that σ contains a symbol for any primitive recursive function or relation.
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Finally, A ⊆ N is analytical iff A is definable in N by some σ-formula. By Folklore 5.2, for each

n ∈ N+, the Π1
n-sets may be thought of as forming the n-th level of the analytical hierarchy.

The lower bound proof in [19, Section 2] utilized the following rather simple result.

Theorem 5.3 (see [17, Section 3])

Let σ+ be ⟨0, s,+;=⟩. Then every Π1
n-subset of N can be defined in N — or rather in its σ+-reduct —

by a σ+-formula of the form
∀X1

1 ∃X1
2 . . . X

1
n︸ ︷︷ ︸

n−1 alternations

Ψ (Pn)

where X1
1 , X1

2 , . . . , X1
n are unary set variables and Ψ contains no set quantifiers.

Corollary 5.4 (see [17, Section 3])

The collection of all σ+-sentences of the form Pn that are true in N is Π1
n-complete.

Notice that Corollary 5.4 generalizes the result of [4], which was used in [1, Section 5] and [16,

Section 4].
9

On the other hand, the fact that the monadic second-order theory of the σ+-reduct of

N is Π1
∞-complete should be viewed as folklore.

However, for our present purposes we shall utilize a more specific characterization, which was

briefly discussed at the end of [17]:

Theorem 5.5

Let σs be ⟨0, s; =⟩. Then every Π1
n-subset of N can be defined in N — or rather in its σs-reduct — by a

σs-formula of the form
∀X2 ∃Y 1

2 . . . Y 1
n︸ ︷︷ ︸

n−1 alternations

Ψ (Sn)

whereX2 is a binary set variable (intended to range over the binary relations on the natural numbers),
Y 1
2 , . . . , Y 1

n are unary set variables and Ψ contains no set quantifiers.

Proof. For convenience, denote by Ns the σs-reduct of N. Take

σ♯
s := ⟨0, s; =, X2⟩

where X2
is treated as a binary predicate symbol. If R ⊆ N2

, we write ⟨Ns, R⟩ for the σ♯
s-structure

with domain N in which the symbols of σs are interpreted as in Ns, and X2
is interpreted as R.

Fix some S ⊆ N2
such that ordinary addition and multiplication are both first-order definable

in ⟨Ns, S⟩.10
Let Ψ+ (x, y, z) and Ψ· (x, y, z) be first-order σ♯

s-formulas defining the corresponding

functions in ⟨Ns, R⟩. Now take ∆ to be the conjunction of the following σ♯
s-sentences:

• ∀x, y, z1, z2 (Ψ+ (x, y, z1) ∧Ψ+ (x, y, z2) → z1 = z2);

9
For similar results concerning other natural fragments of monadic second-order arithmetic, see [18] and [20].

10
For instance, as was famously proved in [12], S can be taken to be the divisibility relation. In general, however, we

do not even need 0, s and = at this point.
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• ∀xΨ+ (x, 0, x) ∧ ∀x, y, z (Ψ+ (x, y, z) → Ψ+ (x, s (y), s (z)));

• ∀x, y, z1, z2 (Ψ· (x, y, z1) ∧Ψ· (x, y, z2) → z1 = z2);

• ∀xΨ· (x, 0, 0) ∧ ∀x, y, z (Ψ· (x, y, z) → ∃u (Ψ+ (z, x, u) ∧Ψ· (x, s (y), u))).

It is easy to see that for every R ⊆ N2
,

⟨Ns, R⟩ ⊨ ∆ ⇐⇒
Ψ+ (x, y, z) and Ψ· (x, y, z) define

addition and multiplication respectively in ⟨Ns, R⟩.

Evidently, since ⟨Ns, S⟩ ⊨ ∆, we get Ns ⊨ ∃X2∆ where ∆ is thought of as a σs-formula in which

X2
occurs free. So in particular, the σs-formulas

∀X2 (∆ → Ψ+ (x, y, z)) and ∃X2 (∆ ∧Ψ+ (x, y, z))

both define addition in Ns; similarly for multiplication. Moreover, by using X2 (s (x), y) instead of

X2 (x, y) we can turn X2 (0, y) into a free unary predicate. To make this idea precise, given a σ♯
s-

formula Φ, let

Φ∗ :=
the result of replacing each subformula

X2 (t1, t2) in Φ by X2 (s (t1), t2).

Then for every R ⊆ N2
,

⟨Ns, R⟩ ⊨ ∆∗ ⇐⇒
Ψ∗

+ (x, y, z) and Ψ∗
· (x, y, z) define

addition and multiplication respectively in ⟨Ns, R⟩.

As before, we have Ns ⊨ ∃X2∆∗
. But the advantage is that X2 (0, · ) can now be treated as a free

unary set variable, which does not alter the interpretations of Φ∗
+ (x, y, z) and Φ∗

· (x, y, z).

Finally, let A ⊆ N be Π1
n-bounded — so A is defined in N by some Π1

n-formula Φ (x). Clearly,

since the Cantor pairing function is first-order definable in N, we can put Φ into the form

∀Y 1
1 ∃Y 1

2 . . . Y 1
n︸ ︷︷ ︸

n−1 alternations

Ψ

where Y 1
1 , Y 1

2 , . . . , Y 1
n are unary set variables and Ψ contains no set quantifiers. Furthermore, we

may assume that every atomic subformula of Ψ has the form

x = y or s (x) = y or x+ y = z or x · y = z or Y 1
i (x)

where i ∈ {1, . . . , n}.
11

Take Ψ♯
to be the result of replacing:

• each x+ y = z in Ψ by Φ+ (x, y, z);

11
For example, the atomic σ-formula x · y + z = u · v is equivalent to

∃w1, w2, w3 (x · y = w1 ∧ w1 + z = w2 ∧ u · v = w3 ∧ w2 = w3)

— this illustrates a general method.
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• each x · y = z in Ψ by Φ· (x, y, z);

• each Y 1
1 (x) in Ψ by X2 (0, x).

It is not hard to show that for all m ∈ N,

N ⊨ Φ (m) ⇐⇒ Ns ⊨ ∀X2 ∃Y 1
2 . . . Y 1

n

(
∆∗ → Ψ♯ (m)

)
.

Thus the σs-formula ∀X2 ∃Y 1
2 . . . Y 1

n

(
∆∗ → Ψ♯ (m)

)
does the job.

Corollary 5.6

The collection of all σs-sentences of the form Sn that are true in N is Π1
n-complete.

Proof. Denote the corresponding collection by Tn. Obviously, we have Tn ⩽ Π1
n-Th (N), so Tn is

Π1
n-bounded.

Let A be a Π1
n-complete subset of N. By Theorem 5.5, A can be defined in Ns by a σs-formula

Φ (x) of the form Sn. So for every m ∈ N,

m ∈ A ⇐⇒ Ns ⊨ Φ (m) ⇐⇒ Φ (m) ∈ Tn

where m is the numeral for m. Thus A ⩽ Tn, so Tn is Π1
n-hard.

This characterisation will play a key role in strengthening earlier complexity results.

6 Concerning elementary analysis

There is a well-known alternative description of the analytical hierarchy in which set variables are

replaced by field variables (also called real variables), intended to range over R; see [13, Chapter 16]

for details. This version, known as elementary analysis, will be convenient for proving complexity

upper bound results.

Let ς be the signature of elementary analysis. To make things precise, assume that

ς := ⟨0, 1,+, · ,−; Nat,⩽⟩

where Nat is a unary predicate symbol, intended to mean ‘is a natural number’. We shall write R2

for the corresponding ς-structure with domain R. Hence for every r ∈ R,

R2 ⊨ Nat (r) ⇐⇒ r ∈ N.

Unlike the case of second-order arithmetic, we shall restrict ourselves to first-order ς-formulas; so

the adjective ‘first-order’ may be omitted, as far as R2
is concerned.

Call a ς-formula Φ arithmetical iff every quantifier occurring in Φ is relativized by Nat (x), i.e.

each subformula of Φ beginning with ∀ or ∃ has the form

∀u (Nat (u) → Θ) or ∃u (Nat (u) ∧Θ).

14



Given n ∈ N+, say that a ς-formula is in Π1
n iff it has the form

∀x⃗1 ∃x⃗2 . . . x⃗n︸ ︷︷ ︸
n−1 alternations

Ψ

where x⃗1, x⃗2, . . . , x⃗n are tuples of (field) variables and Ψ is arithmetical.

Folklore 6.1 (see [13, Chapter 16])

A subset of N is Π1
n-bounded iff it can be defined in R2 by a Π1

n-formula.

Moreover, it is easy to obtain the analogues of Folklore 5.1 and 5.2, with N replaced by R2
. In

particular, for every A ⊆ N:

A ⩽ Th
(
R2

)
⇐⇒ A is Π1

∞-bounded;

A ⩽ Π1
1-Th

(
R2

)
⇐⇒ A is Π1

1-bounded.

Here Th (R2) denotes the collection of all (first-order) ς-sentences true in R2
, and Π1

1-Th (R
2) is

its Π1
1-fragment. We shall utilize these equivalences in Section 9.

7 The case of quantifiers over events

For any m ∈ N and Boolean term ϕ, take

mµ (ϕ) := µ (ϕ) + . . .+ µ (ϕ)︸ ︷︷ ︸
m times

.

Here the empty sum is identified with the constant symbol 0, of course. Call a QPL-formula flat iff

each of its atomic subformulas has the form

mµ (ϕ) ⩽ nµ (ψ) or mµ (ϕ) ⩽ x

where m and n are in N, ϕ and ψ are Boolean terms, x is a field variable. Naturally, we shall write

mµ (ϕ) ⩽ n instead of mµ (ϕ) ⩽ nµ (⊤).

Recall that a class of spaces is rich iff it contains all infinite discrete spaces. Now Theorem 5.5

can be utilized to sharpen Theorem 2.1:

Theorem 7.1

Let K be a rich class of spaces. Then the flat fragment of the QPLe-theory of K is Π1
∞-hard.

Proof. For each n ∈ {2, 3, . . .}, let

Indn (X) := ∀U (At (U) ∧ U ≼ X → ∃V (At (V ) ∧ V ≼ X ∧ nµ (V ) = µ (U))).

In words, modulo events of measure zero, Indn (X) says ‘for every atom U below X there exists an

atom V below X whose measure is n times smaller than that of U ’. So

Seqn (U,X) := At (U) ∧ U ≼ X ∧ Indn (X) ∧ (n− 1)µ (X) = nµ (U)
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says ‘U is an atom, and X is the smallest event above U satisfying Indn (X)’. 12
These flat formulas

will be used to mimic the natural numbers.

Next, consider the sentence

∆ := ∃U ∃X (3µ (U) = 1 ∧ Seq2 (U,X) ∧ ∀V (At (V ) ∧ V ≼ X → ∃Y Seq3 (V, Y ))).

It is instructive to examine the spaces in which ∆ is true. To this end, take Ω to be

{
ωi
j | i, j ∈ N

}
,

and define p⋆ : Ω → [0, 1] by

p⋆
(
ωi
j

)
:=

1

2i · 3j+1
.

Observe that ∑
i,j∈N

p⋆
(
ωi
j

)
=

∑
i,j∈N

1

2i · 3j+1
=

∑
i∈N

1

2i
·
∑
j∈N

1

3j+1
= 2 · 1

2
= 1.

Denote by P⋆ = ⟨A⋆,P⋆⟩ the corresponding discrete probability space — so A⋆ is the power set of

Ω, and P⋆ : A⋆ → [0, 1] is given by

P⋆ (A) :=
∑
ω∈A

p⋆ (ω).

Evidently, we have P⋆ ⊩ ∆. Moreover, one easily verifies that for every space P , if P ⊩ ∆, then

the quotient-space of P modulo events of measure zero is isomorphic to P⋆. Thus, in a sense, the

only model of ∆ is P⋆.

We are going to interpret arithmetic within P⋆. For this purpose, it is convenient to view Ω as

an infinite matrix: for any i, j ∈ N,

Ωi :=
{
ωi
j | j ∈ N

}
and Ωj :=

{
ωi
j | i ∈ N

}
correspond to the ith row and jth column respectively. Now consider the following formulas:

Row0 (X) := ∃U (3µ (U) = 1 ∧ Seq3 (U,X));

Col0 (X) := ∃U (3µ (U) = 1 ∧ Seq2 (U,X));

Row (X) := ∃Y ∃U
(
Col0 (Y ) ∧ At (U) ∧ U ≼ Y ∧ Seq2 (U,X)

)
;

Col (X) := ∃Y ∃U
(
Row0 (Y ) ∧ At (U) ∧ U ≼ Y ∧ Seq3 (U,X)

)
;

Diag (X) := ∃U (3µ (U) = 1 ∧ Seq6 (U,X));

Match (X, Y ) := ∃Z (Diag (Z) ∧ µ (X ∧ Y ∧ Z) ̸= 0).

12
To express the same condition more directly, one might want to replace the conjunct (n− 1)µ (X) = nµ (U) by

¬∃Y (U ≼ Y ∧ Indn (Y ) ∧ Y ≺ X). However, the original formula is simpler and it works nicely in QPLe, where we

deal with Boolean algebras which are not necessarily closed under countable joins.
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Their meanings are straightforward:

Row0 (X) : ‘X is the 0th row’;

Col0 (X) : ‘X is the 0th column’;

Row (X) : ‘X is a row”;

Col (X) : ‘X is a column’;

Diag (X) : ‘X is the diagonal’;

Match (X, Y ) : ‘X and Y have a diagonal element in common’

where by the ‘diagonal’ we mean

Ω :=
{
ωi
i | i ∈ N

}
.

In addition, Match (X, Y ) allows us to switch from rows to columns, and vice versa, since for any

i, j ∈ N,

P⋆ ⊩ Match
(
Ωi,Ωj

)
⇐⇒ i = j.

Obviously, if we think of natural numbers as rows, then the successor function can be defined by

µ (X) = 2µ (Y ). To interpret a binary set variable, we shall use the formula

Γ (X, Y, Z) := ∃Y ∗ (Col (Y ∗) ∧Match (Y, Y ∗) ∧ µ (X ∧ Y ∗ ∧ Z) ̸= 0).

To see how it works, observe that for every A ⊆ N2
,

A =
{
(i, j) ∈ N | P⋆ ⊩ Γ

(
Ωi,Ωj, A′)}

where A′
denotes

{
ωi
j | (i, j) ∈ A

}
. Thus elements of A⋆ may be treated as binary relations on N.

Unary set variables are even easier to handle.

Finally, we are ready to reduce the union of the sets Π1
1-Th (N), Π1

2-Th (N), . . . to the flat frag-

ment of The (K) — this will imply the desired result, by Folklore 5.2. Let Φ be a Π1
n-sentence, for

some n ∈ N+. As the proof of Theorem 5.5 shows, Φ can be effectively converted to an equivalent

σ-sentence Φ♮
of the form Sn. Without loss of generality, we may assume that:

• each atomic subformula of Φ♮
has the form

x = y or s (x) = y or X2 (x, y) or Y 1
i (x)

where i ∈ {2, 3, . . . , n};

• → and ∨ do not occur in Φ♮
, although ∧ and ¬ may occur in it.

For convenience, the set variables X2
, Y 1

2 , Y 1
3 , . . . , Y 1

n will also be treated as distinguished Boolean

17



variables in QPL. Now define τ
(
Φ♮

)
recursively:

τ (x = y) := µ (X) = µ (Y );

τ (s (x) = y) := µ (X) = 2µ (Y );

τ
(
X2 (x, y)

)
:= Γ

(
X, Y,X2

)
;

τ
(
Y 1
i (x)

)
:= X ≼ Y 1

i ;

τ (Ψ ∧Θ) := τ (Ψ) ∧ τ (Θ);

τ (¬Ψ) := ¬τ (Ψ);

τ (∀xΨ) := ∀X (Row (X) → τ (Ψ));

τ (∃xΨ) := ∃X (Row (X) ∧ τ (Ψ));

τ
(
∀X2Ψ

)
:= ∀X2 τ (Φ);

τ
(
∀Y 1

i Ψ
)
:= ∀Y 1

i τ (Ψ);

τ
(
∃Y 1

i Ψ
)
:= ∃Y 1

i τ (Ψ).

By construction, τ
(
Φ♮

)
is always flat. And it is straightforward to verify that

N ⊨ Φ ⇐⇒ ∆ → τ
(
Φ♮

)
∈ The (K).

This gives us the desired reduction.

Moreover, by Theorem 2.2, whenever K is analytical, then we may replace ‘Π1
∞-hard’ by ‘Π1

∞-

complete’ in the formulation of the last result.

8 The case of quantifiers over propositional formulas

The property of being flat in QPL is defined as in QPL, except that we allow elements of Prop to

occur in Boolean terms.

Now the proof of Theorem 7.1 can be modified to sharpen Theorem 4.1:

Theorem 8.1

Let K be a rich class of expanded probability spaces. Then the flat fragment of the QPLe-theory of K
is Π1

1-hard.

Proof. We shall employ the notation of the proof of Theorem 7.1. Take

S⋆ :=
{
Ωi | i ∈ N

}
∪ {Ωj | j ∈ N} ∪

{
Ω
}
.

Call a function π from Prop to A⋆ admissible iff S⋆ ⊆ {π (ϕ) | ϕ ∈ Term◦}. Here we may replace

S⋆ by the Boolean algebra generated by S⋆, of course. Notice that for every π : Prop → A⋆,

⟨P⋆, π⟩ ⊩ ∆ ⇐⇒ π is admissible.
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Since we have ‘⊆’, not ‘=’, there will still be a way of interpreting a binary set variable.

Let Φ be a Π1
1-sentence. Again, Φ can be effectively converted to an equivalent σ-sentence Φ♮

of the form S1. Without loss of generality, we may assume that:

• each atomic subformula of Φ♮
has the form

x = y or s (x) = y or X2 (x, y);

• → and ∨ do not occur in Φ♮
.

As before, the set variable X2
will also be treated as a distinguished Boolean variable. Obviously,

for every A ⊆ Ω there exists π : Prop → A⋆ such that

A ∈ {π (ϕ) | ϕ ∈ Term◦}

— even though one needs uncountably many π’s to cover all subsets of A. It follows that

N ⊨ Φ ⇐⇒ ∆ → τ
(
Φ♮

)
∈ The (K).

This gives us the desired reduction.

By adding quantifiers over reals we get:

Theorem 8.2

Let K be a rich class of expanded probability spaces. Then the flat fragment of the QPL-theory of K is
Π1

∞-hard.

Proof. Again, we shall employ the notation of the proof of Theorem 7.1. In particular, the formula

Γ (X, Y, Z) will be used to interpret a free binary set variable, which is intuitively bounded by the

outermost universal quantifier; cf. the proof of Theorem 8.1. However, unary set variables — each

of which may be bounded by ∀ or ∃ — will be handled using field variables.

As is well known, every ε ∈ [0, 1) can be uniquely represented as

ε =
∞∑
i=0

εi
2i+1

where each εi is either 0 or 1, and the sequence ε0, ε1, . . . contains infinitely many 0’s. It is easy to

verify that

ε0 = 1 ⇐⇒ ε ⩾
1

2
,

and moreover, for all k ∈ N+,

εk = 1 ⇐⇒ ε ⩾
k−1∑
i=0

εi
2i+1

+
1

2k+1
.
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Intuitively, we shall think of ε as the set {i ∈ N | εi = 1}. This will give us all subsets of N whose

complements are not finite. Also note that for every S ⊆ N there exist ε+, ε− ∈ [0, 1) such that

S =
{
i ∈ N | ε+i = 1

}
∪
{
i ∈ N | ε−i = 0

}
.

Naturally, we want to interpret arbitrary subsets of N as elements of [0, 1)2.

To make the above idea work, we introduce some additional formulas:

Rows (X) := ∀U (Row (U) ∧ µ (X ∧ U) ̸= 0 → U ≼ X);

Upper (U,X) := Rows (X) ∧ ∀V (Row (V ) → (V ≼ X ↔ µ (U) < µ (V ))).

With P⋆ in mind, their meanings are straightforward:

Rows (X) : ‘X is a union of rows’;

Upper (U,X) : ‘X is the union of all rows that are more probable than U ’.

Furthermore, if µ (U) > 0, then Upper (U,X) implies that X is a Boolean combination of rows —

because it includes only finitely many rows. Now take

Approx (X, x, U) := ∀V (Row (V ) ∧ V ≼ X → µ (U) ⩽ µ (V ))∧
∃V (Row (V ) ∧ 2µ (V ) = 1 ∧ (V ≼ X ↔ µ (V ) ⩽ x))∧
∀V (Row (V ) ∧ µ (U) ⩽ µ (V ) →

(V ≼ X ↔ ∃Y (Upper (V, Y ) ∧ µ ((X ∧ Y ) ∨ V ) ⩽ x))).

It is not hard to verify that for any k ∈ N, S ⊆ N and ε ∈ [0, 1),

P⋆ ⊩ Approx
(⋃{

Ωi | i ∈ S
}
, ε,Ωk

)
⇐⇒ S = {i ∈ N | i ⩽ k and εi = 1}.

Consequently, for the formula

Σ (U, x) := ∃X (Approx (X, x, U) ∧ U ≼ X)

we have P⋆ ⊩ Σ
(
Ωk, ε

)
iff εk = 1. The reader should be warned: even though ε plays the role of⋃

{Ωi | εi = 1}, the latter is not necessarily expressible by means of a propositional formula.

Let Φ be a Π1
n-sentence, for some n ∈ N+. Convert Φ to Φ♮

, as in the proof of Theorem 7.1. For

convenience, with each unary set variable Y 1
i , we associate a pair y+i , y−i of distinguished field va-
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riables. Now define ρ
(
Φ♮

)
recursively:

ρ (x = y) := µ (X) = µ (Y );

ρ (s (x) = y) := µ (X) = 2µ (Y );

ρ
(
X2 (x, y)

)
:= Γ

(
X, Y,X2

)
;

ρ
(
Y 1
i (x)

)
:= Σ

(
X, y+i

)
∨ ¬Σ

(
X, y−i

)
;

ρ (Ψ ∧Θ) := ρ (Ψ) ∧ ρ (Θ);

ρ (¬Ψ) := ¬ρ (Ψ);

ρ (∀xΨ) := ∀X (Row (X) → ρ (Ψ));

ρ (∃xΨ) := ∃X (Row (X) ∧ ρ (Ψ));

ρ
(
∀X2Ψ

)
:= ∀X2 ρ (Φ);

ρ
(
∀Y 1

i Ψ
)
:= ∀y+i , y−i

(
0 ⩽ y+i , y

−
i < 1 → ρ (Ψ)

)
;

ρ
(
∃Y 1

i Ψ
)
:= ∃y+i , y−i

(
0 ⩽ y+i , y

−
i < 1 ∧ ρ (Ψ)

)
.

By construction, ρ
(
Φ♮

)
is always flat. And it is straightforward to check that

N ⊨ Φ ⇐⇒ ∆ → ρ
(
Φ♮

)
∈ Th (K).

This gives us the desired reduction.

As will be shown shortly, the lower bounds provided by Theorems 8.1 and 8.2 often turn out to

be precise.

9 Some general upper bounds

A general upper bound argument for QPL, as well as QPLe, is given by Theorem 2.2. The cases of

QPL and QPLe are, in fact, much simpler and quite straightforward. Still, to keep the presentation

self-contained, we are going to provide the corresponding arguments below.

It is well known that RN
— i.e. the collection of all functions from N to R — can be represented

in elementary analysis using only quantifiers over natural numbers. To be precise, one can find an

arithmetical ς-formula Split (x, u, v) having the following properties:

• Split (x, u, v) defines in R2
the graph of a function from R× N to R;

• for every f : N → R there exists c ∈ R such that

f =
{
(n, r) ∈ N× R | R2 ⊨ Split (c, n, r)

}
.

— intuitively, f is coded by c.
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Since RN
has the same cardinality as R, this should not come as a surprise.

13
For convenience, fix a

special variable m, intended to range over RN
. Formally, it means that m is, in fact, a field variable,

and all expressions of the form m (t) in a ς-formula Φ have to be systematically eliminated:

m (t) 7−→ ∀u (Split (m, t, u) → u )

where u is a fresh field variable. To avoid confusion, we shall always make sure that t (in m (t)) is

interpreted as a natural number. Notice that we may also use

∃u (Split (m, t, u) ∧ u )

instead of ∀u (Split (m, t, u) → u ). Thus the process of elimination preserves the prefix

classification described in Section 6.

Let # be an effective one-one mapping from Term◦
onto N. Given f : Term◦ → R, denote by

#f the function from N to R given by

#f (#ϕ) := f (ϕ).

Next, with each class K of expanded spaces, we associate the set

K# :=
{
c ∈ R | there exists A ∈ K such that #pA is coded by c

}
.

Naturally, we call K analytical iff K#
is definable in R2

.

Theorem 9.1

Let K be an analytical class of expanded spaces. Then the QPL-theory of K is Π1
∞-bounded.

Proof. We are going to reduce Th (K) to Th (R2).

Let conj, disj : N2 → N and neg : N → N be given by:

conj (#ϕ,#ψ) := # (ϕ ∧ ψ);
disj (#ϕ,#ψ) := # (ϕ ∨ ψ);

neg (#ϕ) := # (¬ϕ).14

Obviously, these functions are computable, and hence definable in R2
by means of arithmetical ς-

formulas. To simplify the exposition, we shall pretend that ς contains the corresponding function

symbols conj, disj and neg — they may be easily eliminated if needed.

With each Boolean variable X , we associate a distinguished field variable x, intended to range

over N. Then, given a Boolean term ϕ, we define the ς-term code (ϕ) recursively:

code (δ) := #δ for all δ ∈ {⊥,⊤} ∪ Prop;

code (X) := x;

code (ψ ∧ θ) := conj (code (ψ), code (θ));

code (ψ ∨ θ) := disj (code (ψ), code (θ));

code (¬ψ) := neg (code (ψ)).

13
On the other hand, it is impossible to represent NR

in elementary analysis.

14
Here ϕ and ψ range over Term◦

.
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Also, given a field term t, take

γ (t) := the result of replacing each µ (ϕ) in t by m (code (ϕ))

where m is intended to range over RN
, as described earlier.

Let Φ be a QPL-sentence. Define η (Φ) as follows:

η (t1 ⩽ t2) := γ (t1) ⩽ γ (t2);

η (Ψ ∧Θ) := η (Ψ) ∧ η (Θ);

η (Ψ ∨Θ) := η (Ψ) ∨ η (Θ);

η (¬Ψ) := ¬η (Ψ);

η (∀X Ψ) := ∀x (Nat (x) → η (Ψ));

η (∃X Ψ) := ∃x (Nat (x) ∧ η (Ψ));

η (∀xΨ) := ∀x η (Ψ);

η (∃xΨ) := ∃x η (Ψ).

Finally, since K is analytical, there exists a ς-formula ∆(x) that defines K#
in R2

. It is straightfor-

ward to verify that

Φ ∈ Th (K) ⇐⇒ R2 ⊨ ∀m (∆ (m) → η (Φ)),

which gives us the desired reduction.

Hence, whenever K is analytical, we may replace ‘Π1
∞-hard’ by ‘Π1

∞-complete’ in the formula-

tion of Theorem 8.2. Clearly, Theorem 9.1 covers a wide range of classes of expanded spaces.

Further, we say that a ς-formula is in Σ1
1 iff it has the form ∃x⃗Ψ where x⃗ is a tuple of variables

and Ψ is arithmetical. Thus Σ1
1-formulas may be viewed as negated Π1

1-formulas. Call a class K of

expanded spaces existential iff K#
is definable in R2

by means of a Σ1
1-formula.

Theorem 9.2

Let K be an existential class of expanded spaces. Then the QPLe-theory of K is Π1
1-bounded.

Proof. Pick a Σ1
1-formula ∆(x) that defines K#

in R2
. Observe that for each QPLe-sentence Φ, we

can effectively convert ∀m (∆ (m) → η (Φ)) to an equivalent Π1
1-sentence.

Therefore, whenever K is existential, we may replace ‘Π1
1-hard’ by ‘Π1

1-complete’ in the formu-

lation of Theorem 8.1.

For instance, take K to be the class of all expanded spaces. It is instructive to see how K#
can

be defined in R2
. Notice that since propositional logic is decidable, there exists an arithmetical ς-

formula Eq (x, y) such that for any ϕ, ψ ∈ Term◦
,

R2 ⊨ Eq (#ϕ,#ψ) ⇐⇒ ϕ and ψ are logically equivalent.
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Hence — letting conj and neg be as in the proof of Theorem 9.1 — the ς-formula

Γ (m) := ∀x (0 ⩽ m (x) ⩽ 1)∧
∀x∀y (Nat (x) ∧ Nat (y) ∧ Eq (x, y) → m (x) = m (y))∧
∀x∀y (Nat (x) ∧ Nat (y) → m (x) = m (conj (x, y)) +m (conj (x, neg (y))))

says that m codes some acceptable function from Term◦
to [0, 1]. Thus Γ (m) defines K#

in R2
, by

Proposition 4.2. Further, to deal with expanded spaces of a special kind, we may add suitable for-

mulas to Γ (m). As an example, the ς-formula

∀x (Nat (x) ∧m (x) > 0 → ∃u (Nat (u) ∧ 0 < m (u) < m (x)))

says that the acceptable function f coded by m has infinite range — which is equivalent to the con-

dition that for every expanded space A = ⟨⟨A ,P⟩, π⟩,

pA = f =⇒ Aπ is infinite, modulo events of measure zero.

Other reasonable properties can be handled similarly.
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[8] Z. Marković, M. Rašković. Some new probability operators. In Z. Ognjanović (ed.),
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