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Abstract

This article is concerned with Halpern’s first-order logics of probability, which we denote

by L1 and L2: the first of these deals with probability distributions on the domain, while the

second employs distributions on external sets of possible worlds. The proofs of the complexity

lower bound results for L1 and L2 given in [1] relied heavily on using polynomials. We shall

obtain the same lower bounds for small fragments of L1 and L2 in which neither addition nor

multiplication is allowed. Further, it will be studied what happens if we exclude field variables,

and hence quantifiers over reals; the upper bound proofs here will utilize suitable analogues of

the (downward) Löwenheim–Skolem theorem.
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1 Introduction

Briefly stated, a probabilistic logical system is any formal language whose semantics makes use of

probability measures. Languages of this kind play an important role in logic and its applications to

computer science and artificial intelligence. For more information, see, e.g., [9].

Many quantified probability logics may be viewed as modifications of two ‘first-order’ logics of

probability studied in [3] and [1]. The latter include quantifiers over elements of a given domain,

and also quantifiers over reals. However, the first of them employs probability distributions on the

domain, while the second deals with distributions on additional sets of possible worlds. We denote

them by L1 and L2 respectively. Naturally, they depend on the choice of a signature, like classical

first-order logic.
1

On the other hand, L1 and L2 may be treated as expansions of the well-known

language studied in [2, Section 6]; see [12] for another approach to expanding that language.

The main complexity results for L1 and L2 were obtained in [1]. Briefly, for each i ∈ {1, 2}, if

ς is a sufficiently rich signature, then the validity problem for Li (ς) is Π2
1-complete; and if only at

1
Following [1], we shall focus on predicate and constant symbols.
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most countable structures are considered, then the corresponding problem is equivalent to that of

recognizing true sentences in second-order arithmetic.
2

The lower bound arguments in [1] relied

heavily on using polynomials of probabilities of first-order formulas, and hence, in particular, they

fail if we limit ourselves to linear terms. In this paper, by providing new and more advanced argu-

ments we are going to derive the same lower bounds for small fragments of L1 and L2 in which

neither addition nor multiplication is allowed. In these fragments:

• each basic formula is either an equality between two probabilities or an inequality between

some probability and a field variable;

• the probability symbol µ can only be applied to quantifier-free first-order formulas;

• all occurrences of first-order formulas must be in the scope of µ.

Further, let L ♮
1 and L ♮

2 be obtained from L1 and L2 by excluding field variables, and hence quan-

tifiers over reals.
3

We are going to analyze the complexity of the small fragments of L ♮
1 and L ♮

2 as

well. The upper bound proofs here will utilize suitable analogues of the (downward) Löwenheim–

Skolem theorem. Note that the present work may be compared — or contrasted — with [6], which

is concerned with ‘quantitative’ propositional probability logics like those in [2] and their ‘qualita-

tive’ fragments, whose complexity is defined in terms of polynomial-time reducibility.

The rest of the article is organized as follows. In Sections 2 and 3, the syntax and semantics of

L1 and L2 are described, and some relevant results of [1] are stated. Section 4 contains some ma-

terial on higher-order arithmetic. In Sections 5 and 6, we show that the earlier hardness results for

Halpern’s logics can be strengthened in a crucial way — by excluding multiplication and addition.

Finally, Section 7 provides suitable analogues of the Löwenheim–Skolem theorem for L ♮
1 and L ♮

2 ,

which imply that the corresponding validity problems belong to Π1
1, as expected.

2 Probabilities on the domain

The purpose of this section is to recall the definition of Halpern’s ‘first-order’ logic of probability

of type 1, which we denote by L1, and some related complexity results.

Consider a (first-order) signature ς . We shall restrict ourselves to signatures without equality,

and containing no function symbols. Then, following [1], by an L1 (ς)-structure we mean a triple

⟨D, π, p⟩ where:

• D is a non-empty set;

• π is a ς-structure, as defined in first-order logic, with domain D;

2
At the same time, for practically any reasonable class of probability spaces, its elementary theory can be reduced

to complete second-order arithmetic; see [17] for details.

3
See [19] for a study of their prefix fragments in terms of hereditary undecidability.
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• p is a discrete probability distribution on D, i.e. a function from D to [0, 1] such that

|{d ∈ D | p (d) ̸= 0}| ⩽ ℵ0 and

∑
d∈D

p (d) = 1,

which generates the probability measure P on the powerset of D as follows:

P (A) :=
∑
d∈A

p (d).

Note, in passing, that given p as above and a non-zero k ∈ N, we can define a discrete distribution

pk on Dk
by

pk (d1, . . . , dk) := p (d1) · . . . · p (dk),

which generates the measure Pk
on the powerset of Dk

, of course. Evidently, if A ⊆ Dk
, and A′

is

obtained from A by permuting some of the coordinates, then Pk (A′) coincides with Pk (A).

As for the syntax of L1, the corresponding alphabet includes two disjoint countable sets

Var := {x, y, z, . . .} and Var := {a, b, c, . . .},

whose elements are called individual variables and field variables respectively. Of course, the latter

are intended to range over reals. In addition, we have:

• the logical symbols ⊤, ⊥, ∧, ∨ and ¬;

• the quantifier symbols ∀ and ∃;

• the symbols 0, 1, +, −, · , = and ⩽ of the language of ordered fields;

• a special symbol µ, which will be interpreted using probability measures.
4

Given a signature ς , let µ-Form1
ς and µ-Term1

ς be the sets defined simultaneously by the following

conditions:

1. µ-Form1
ς contains all atomic fist-order ς-formulas, including ⊤ and ⊥;

2. µ-Term1
ς contains 0 and 1;

3. µ-Term1
ς contains all field variables;

4. µ-Form1
ς is closed under ∧, ∨ and ¬;

5. µ-Form1
ς is closed under Qx, for all Q ∈ {∀,∃} and x ∈ Var;

6. µ-Form1
ς is closed under Qa, for all Q ∈ {∀,∃} and a ∈ Var;

7. if ϕ belongs to µ-Form1
ς , and x⃗ is a non-empty tuple of elements of Var, then µx⃗ (ϕ) belongs

to µ-Term1
ς ;

4
Here ⊤ and ⊥ stand for ‘truth’ and ‘falsity’ respectively.
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8. µ-Term1
ς is closed under +, − and · ;

9. if t1 and t2 belong to µ-Term1
ς , then t1 = t2 and t1 ⩽ t2 belong to µ-Form1

ς .

Elements of these sets are called L1 (ς)-formulas and L1 (ς)-terms respectively. By the depth of an

L1 (ς)-formula ϕ, denoted by dp (ϕ), we mean the largest number of nested occurrences of µ in ϕ;

similarly for L1 (ς)-terms. An L1 (ς)-formula ϕ is:

• basic if ϕ has the form t1 = t2 or t1 ⩽ t2 where t1 and t2 are L1 (ς)-terms;

• regular if the depth of ϕ is positive, and each occurrence of a first-order ς-formula in ϕ is in

the scope of exactly dp (ϕ) occurrences of µ.

For instance, if ς contains a binary predicate symbol R, then:

i. µx (R (a, x)) ⩽ 1 and µa (⊥) = 0 are not L1 (ς)-formulas;

ii. 0 ⩽ a ⩽ 1 → ∃x (µy (R (x, y)) = a) is a regular L1 (ς)-formula of depth 1;

iii. µx (R (x, x) ∧ µy (R (x, y)) ⩽ a) = 1 is a non-regular L1 (ς)-formula of depth 2.

Finally, an L1 (ς)-sentence is an L1 (ς)-formula with no free variable occurrences — provided that

µ(x1,...,xk) binds all occurrences of x1, . . . , xk in its scope.

Now consider an L1 (ς)-structure M = ⟨D, π, p⟩. Hence the individual variables are intended

to range over D. By a valuation in M we mean a pair ⟨ζ, γ⟩ where ζ and γ are functions from Var

and Var to D and R respectively. Then

M ⊩ ϕ [ζ, γ]

read as ‘ϕ is true in M under ⟨ζ, γ⟩’, can be defined by induction on the depth of ϕ. Of course, in

case ϕ is an atomic first-order ς-formula, we employ the ς-structure π, viz.

M ⊩ ϕ [ζ, γ] ⇐⇒ π ⊨ ϕ [ζ].

Assuming dp (ϕ) > 0, the idea is that given an arbitrary valuation ⟨η, δ⟩ in M, we interpret each

µ(x1,...,xk) (ψ) with dp (ψ) < dp (ϕ) as

Pk
({

(d1, . . . , dk) ∈ Dk | M ⊩ ψ
[
ηx⃗
d⃗
, δ
]})

where ηx⃗
d⃗

is the function from Var to D such that

ηx⃗
d⃗
(u) =

di if u = xi with i ∈ {1, . . . , k}

η (u) otherwise.

For example, take

ϕ (x, a) := a+ a = 1 ∧ µy (R (x, y)) = a.
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Then M ⊩ ϕ [ζ, γ] iff both γ (a) and P ({d ∈ D | π ⊨ R (ζ (x) , d)}) are equal to 1/2. See [3] and

[1] for details. We call an L1 (ς)-sentence valid if it is true in all L1 (ς)-structures. In fact, neither

the lower bound arguments in [1] nor those in the present article require iterations of µ. Thus we

shall deal mainly with L1 (ς)-formulas of depth 1.

Theorem 2.1 (see [1])

Let ς be ⟨R2⟩ where R is a binary predicate symbol. Then the validity problem for L1 (ς)-sentences is
Π2

1-complete. However, if we limit ourselves to at most countable domains, the corresponding problem
becomes Π1

∞-complete.5

Remark 2.2. In the case of at most countable domains the upper bound argument — which gives

us a translation into second-order arithmetic — is straightforward; cf. [11, § 16.2]. But the general

upper bound argument, though similar in spirit, requires an analogue of the Löwenheim–Skolem

theorem, which ensures that every satisfiable L1 (ς)-sentence is true in some L1 (ς)-structure M
with |D| ⩽ 2ℵ0

; see the proof of Theorem 5.2 in [1].

Let L ♮
1 be the sublanguage of L1 obtained by excluding field variables, and hence quantifiers

over reals. So the definitions of L ♮
1 (ς)-formula and L ♮

1 (ς)-term are like those for L1 except that

items 3 and 6 are removed. The following result is not explicitly stated in [1], but it can be easily

extracted from the proof of Theorem 5.5 there.

Theorem 2.3 (see [1])

Let ς be as before. Then the validity problem for L ♮
1 (ς)-sentences is Π1

1-hard, even if we confine our-
selves to at most countable domains.

This lower bound turns out to be precise. Naturally, in the case of at most countable domains a

direct upper bound argument applies. In the general case we need to show that, in addition, every

satisfiable L ♮
1 (ς)-sentence is true in some L1 (ς)-structure M with |D| ⩽ ℵ0 — this will be done

in Section 7. So the corresponding problems are both Π1
1-complete.

3 Probabilities on possible worlds

We now turn to Halpern’s ‘first-order’ logic of probability of type 2, denoted by L2. See [10] for a

similar logic with somewhat more general semantics.

Consider a signature ς . An L2 (ς)-structure is a quadruple ⟨D,Ω, π, p⟩ where:

• D and Ω are non-empty disjoint sets;

• π is a function from Ω to the class of all ς-structures with domain D;

• p is a discrete probability distribution on Ω — rather than on D.

5
See Section 4 for the notion of Π2

1-completeness and the like.
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In this context, elements of Ω are viewed as possible worlds; by the universe we mean the union of

D and Ω. In effect, the corresponding semantics limits the use of iterations of µ in L2, and a more

flexible approach allows p to depend on the choice of a possible world; cf. [10]. Still, this difference

turns out to be somewhat irrelevant to our development because our lower bound arguments will

not require nested occurrences of µ.

The sets µ-Form2
ς and µ-Term2

ς , whose elements are called L2 (ς)-formulas and L2 (ς)-terms,
are built up exactly as µ-Form1

ς and µ-Term1
ς , except that the subscripts x⃗ are dropped: we use µ

instead of µx⃗ throughout. The related syntactic notions are defined exactly as in L1.

Next, consider an L2 (ς)-structure M = ⟨D,Ω, π, p⟩. As before, by a valuation in M we mean

a pair ⟨ζ, γ⟩ where ζ and γ are functions from Var and Var to D and R respectively. Then

M, ω ⊩ ϕ [ζ, γ]

read as ‘ϕ is true at ω in M under ⟨ζ, γ⟩’, can be defined by induction on the depth of ϕ. Naturally,

in case ϕ is an atomic first-order ς-formula, we employ

M, ω ⊩ ϕ [ζ, γ] ⇐⇒ π (ω) ⊨ ϕ [ζ].

Assuming dp (ϕ) > 0, the idea is that given an arbitrary valuation ⟨η, δ⟩ in M, we interpret each

µ (ψ) with dp (ψ) < dp (ϕ) as

P ({ω ∈ Ω | M, ω ⊩ ψ [η, δ]})

where P is the probability measure on the powerset of Ω generated by p. Notice that whenever ϕ

is regular, we have

M, ω ⊩ ϕ [ζ, γ] ⇐⇒ M, ω′ ⊩ ϕ [ζ, γ] for each ω′ ∈ Ω,

and therefore M, ω ⊩ ϕ [ζ, γ] may be abbreviated M ⊩ ϕ [ζ, γ]. For example, let ς contain a unary

predicate symbol U , and take

ϕ (x, a) := a+ a ⩽ µ (U (x)).

Then M ⊩ ϕ [ζ, γ] iff P ({ω ∈ Ω | π (ω) ⊨ U (ζ (x))}) is greater than or equal to 2γ (a). Finally, an

L2 (ς)-sentence is valid if it is true at every world of every L2 (ς)-structure.
6

The complexity results for L2 are analogous to those for L1. Actually, the situation is worse:

the lower bound proofs for L2 require only a unary predicate symbol, not a binary one.

Theorem 3.1 (see [1])

Let ς be ⟨U1⟩ where U is a unary predicate symbol. Then the validity problem for L2 (ς)-sentences is
Π2

1-complete. However, if we limit ourselves to at most countable universes, the corresponding problem
becomes Π1

∞-complete.
6
Note, in passing, that since the foregoing semantics utilizes the same distribution p at all worlds, some iterations

of µ become redundant. For instance, both µ (µ (U (x)) ̸= 0) ̸= 0 and µ (µ (U (x)) ̸= 0) = 1 have the same meaning

as µ (U (x)) ̸= 0. However, we shall deal mainly with L2 (ς)-formulas of depth 1.
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Let L ♮
2 be the sublanguage of L2 obtained by excluding field variables. The argument for the

following result is similar to that for Theorem 6.1.

Theorem 3.2 (see [1])

Let ς be as before. Then the validity problem for L ♮
2 (ς)-sentences is Π1

1-hard, even if we confine our-
selves to at most countable universes.

Again, this lower bound turns out to be precise; a suitable analogue of the Löwenheim–Skolem

theorem (needed in the general case) will be proved in Section 7.

Remark 3.3. Z. Ognjanović and his colleagues have developed suitable infinitary calculi for some

languages similar to L ♯
2 ; see [10] and [9, Chapters 1–2] for more information and background.

7

4 Concerning higher-order arithmetic

In general, we shall assume familiarity with basic notions and methods of higher-order arithmetic;

see, e.g., [11]. Therefore only a brief summary of some special results will be given below; cf. also

[13] (which generalizes [4]), [14] and [16].

Recall that in second-order arithmetic, in addition to individual variables x, y, z, . . . , which are

intended to range over N, we have k-ary set variables

Xk, Y k, Zk, . . . ,

intended to range over the powerset of Nk
, for each positive natural number k. Hence the atomic

second-order formulas additionally include all expressions of the form

Xk (t1, . . . , tk)

where t1, . . . , tk are terms. In what follows we shall write X instead of X1
.

Let N be the standard model of arithmetic presented in the signature σ := ⟨0, s,+, · ; =⟩. We

write σs for the much smaller signature ⟨0, s; =⟩ and Ns for the σs-reduct of N. Take

σ♯
s := ⟨0, s; =, Y 2⟩

where Y 2
is treated as a binary predicate symbol. For each S ⊆ N2

, denote by ⟨Ns, S⟩ the σ♯
s-ex-

pansion of Ns in which Y 2
is interpreted as S.

We start with a relatively simple but important observation:

Lemma 4.1 (see [18, Section 5])

7
Intuitively, the reason why quantifiers over reals are avoided here is that probability logics with both quantifiers

over reals and some other sort of quantifiers are usually at least as complex as complete second-order arithmetic, but

reasonable infinitary calculi can only handle Π1
1-sets; see [8] for details.
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There exist first-order σ♯
s-formulas Ψ+ (x, y, z), Ψ· (x, y, z) and a first-order σ♯

s-sentence ∆ such that
for every S ⊆ N2,

⟨Ns, S⟩ ⊨ ∆ ⇐⇒
Ψ+ (x, y, z) and Ψ· (x, y, z) define

addition and multiplication respectively in ⟨Ns, S⟩.

It leads to a number of nice definability and complexity results. We are going to mention only

three of them, which will be utilized in Sections 5 and 6; see [18, Section 5] for more on this.

Recall that a second-order σ-formula is in Π1
1 if it has the form ∀X⃗ Ψ where X⃗ is a tuple of set

variables, and Ψ contains no set quantifiers. Denote

Th2 (N) := the full second-order theory of N,

Π1
1-Th

2 (N) := the Π1
1-fragment of Th2 (N).

Assume some Gödel numbering of the language of second-order arithmetic has been chosen, and

hence its formulas may be identified with natural numbers. Then S ⊆ N is Π1
1-hard if Π1

1-Th2 (N)

(viewed as a subset of N) is computably reducible to S, and Π1
n-complete if the converse also holds;

see [11] for discussion and alternative definitions.
8

Corollary 4.2

Let S11 denote the collection of all second-order σs-sentences of the form ∀Y 2Ψ where Y 2 is a binary
set variable, and Ψ contains no set quantifiers. Then {Φ ∈ S11 | N ⊨ Φ} is Π1

1-complete.

Further, as in [1], we say that S ⊆ N is Π1
∞-hard if Th2 (N) is computably reducible to S, and

Π1
∞-complete if the converse also holds.

Corollary 4.3

Let S1∞ denote the collection of all second-order σs-sentences of the form ∀Y 2Ψ where Y 2 is a binary
set variable, and Ψ contains only unary set quantifiers. Then {Φ ∈ S1∞ | N ⊨ Φ} is Π1

∞-complete.

In third-order arithmetic we also have class variables

X , Y , Z, . . . ,

intended to range over the powerset of the powerset of N. It would be more accurate to call these

unary class variables, but we shall not deal with class variables of greater arities. Hence the atomic

third-order formulas additionally include all expressions of the form X (X).

A third-order σ-formula is in Π2
1 if it has the form ∀X⃗ Ψ where X⃗ is a tuple of class variables,

and Ψ contains no class quantifiers. The definitions of Π2
1-hardness and Π2

1-completeness are like

those of Π1
1-hardness and Π1

1-completeness.

8
Here S is computably reducible to T if there exists a computable f : N → N (which can be thought of as an input

transformation) such that for every n ∈ N,

n ∈ S ⇐⇒ f (n) ∈ T.

8



Corollary 4.4

Let S21 denote the collection of all third-order σs-sentences of the form

∀X ∀Y 2Ψ

where X is a class variable, Y 2 is a binary set variable, and Ψ contains only unary set quantifiers and
no class quantifiers. Then {Φ ∈ S21 | N ⊨ Φ} is Π2

1-complete.

Remark 4.5. For our purposes, we shall use slightly modified versions of the last two corollaries.

Namely, consider the arithmetical formula

Cof (X) := ∀x∃y (x < y ∧ ¬X (y)),

which says that X is not co-finite, i.e. the complement of X is not finite.
9

Unary set quantifiers are

relativized to Cof (X) in the obvious way:

∀⋆X Φ := ∀X
(
Cof (X) → Φ

)
and ∃⋆X Φ := ∃X

(
Cof (X) ∧ Φ

)
.

Then since co-finite (as well as finite) subsets of N can be coded by natural numbers, it is straight-

forward to obtain the analogues of Corollaries 4.3 and 4.4 in which all unary set quantifiers are to

be relativized to Cof (X).

5 The case of structures of type 2

It is more convenient to start with L2, and then adapt the corresponding arguments to L1, though

this is not crucial. We write Form◦
ς for the set of all quantifier-free first-order ς-formulas.

Call a regular L2 (ς)-formula flat if each of its basic subformulas has the form

µ (ϕ) = µ (ψ) or µ (ϕ) ⩽ a

where ϕ and ψ belong to Form◦
ς , and a is a field variable. Naturally, we shall write µ (ϕ) = 0 and

µ (ϕ) = 1 instead of µ (ϕ) = µ (⊤) and µ (ϕ) = µ (⊥) respectively. Obviously, ‘µ (ϕ) ⩽ a’ must be

omitted in the case of L ♮
2 .

Now Corollary 4.2 can be utilized to get:

Theorem 5.1

Let ς be ⟨U1⟩ where U is a unary predicate symbol. Then the validity problem for flat L ♮
2 (ς)-sentences

is Π1
1-hard, even if we confine ourselves to at most countable universes.

Proof. The basic idea is the following. Imagine a family ⟨Eij : i, j ∈ N⟩ of pairwise disjoint events

(in some probability space) with positive measures. Take

Ei :=
⋃

j∈N
Eij and E∗

j :=
⋃

i∈N
Eij.

9
Obviously, the standard ordering relation on N is first-order definable in N. Moreover, it can be defined in Ns by

the monadic second-order σs-formula ∀X (∀u (X (u) → X (s (u))) ∧X (x) → X (y)).
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Intuitively, Ei and E∗
j can be viewed as the ith row and the jth column respectively; of course, Eij

equals Ei ∩ E∗
j . Let us interpret natural numbers as rows, and assume that the successor function

on the rows is definable. Then, provided that we can switch from every row to the corresponding

column, a given subset S of N2
may be encoded as the event

ES :=
⋃

(i,j)∈S
Eij

— because (i, j) belongs to S iff Eij belongs to ES , i.e. Ei ∩ E∗
j ∩ ES has a non-zero measure. To

realize this idea within the flat fragment of L ♮
2 , some additional machinery will be needed.

Consider an arbitrary L2 (ς)-structure M = ⟨D,Ω, π, p⟩. With each d ∈ D, associate the cor-

responding event

JdK := {ω ∈ Ω | π (ω) ⊨ U (d)}.

Denote by D the collection of all these events. If x is a variable, let us write [x] for U (x). When it

comes to explaining the meaning of formulas, we may also use expressions like JxK, which depend

on the choice of valuation. For instance, µ ([x]) ̸= 0 means that JxK has a non-zero measure: given

a valuation ⟨ζ, γ⟩ in M, this formula holds iff P (Jζ (x)K) is not zero. Then the (flat) formula

x ≈ y := µ (([x] ∧ ¬[y]) ∨ ([y] ∧ ¬[x])) = 0

says ‘the symmetric difference of JxK and JyK has measure zero’. For expository purposes, assume

that p (ω) > 0 for all ω ∈ Ω. While this restriction is not necessary, it will make some descriptions

below simpler. Thus x ≈ y means that JxK equals JyK. So

x ≼ y := µ ([x] ∧ ¬[y]) = 0

says ‘JxK is a subset of JyK’. For convenience, take

D := the closure of D under finite intersection and complementation.

Naturally, it can be viewed as a Boolean algebra. Observe that the formula

At (x) := µ ([x]) ̸= 0 ∧ ∀y (µ ([x] ∧ [y]) ̸= 0 → µ ([x] ∧ [y]) = µ ([x]))

holds iff JxK is an atom of D , i.e. a minimal non-empty event in D . We shall also need the follow-

ing formulas:

Disj2 (x, y) := µ ([x] ∧ [y]) = 0;

Disj3 (x, y, z) := µ ([x] ∧ [y]) = µ ([x] ∧ [z]) = µ ([y] ∧ [z]) = 0;

DEq2 (x, y) := Disj2 (x, y) ∧ µ ([x]) = µ ([y]);

DEq3 (x, y, z) := Disj3 (x, y, z) ∧ µ ([x]) = µ ([y]) = µ ([z]);

Step2 (x, y) := ∃y1 ∃y2 (DEq2 (y1, y2) ∧ µ ([x]) = µ ([y1] ∨ [y2]) ∧ µ ([y]) = µ ([y1]));

Step3 (x, y) := ∃y1 ∃y2 ∃y3 (DEq3 (y1, y2, y3) ∧
µ ([x]) = µ ([y1] ∨ [y2] ∨ [y3]) ∧ µ ([y]) = µ ([y1])).

10



Their meanings are clear. In effect, the purpose of Step2 (x, y) is to guarantee that the measure of

JyK is two times smaller than that of JxK — but we have to do it in a special way to stay within the

flat fragment. Similarly for Step3 (x, y). For technical reasons, suppose that M satisfies

Tech := ∀u (At (u) → ∃v (At (v) ∧ Step2 (u, v)) ∧ ∃v (At (v) ∧ Step3 (u, v))).

With Tech in mind, the formula

Ind2 (x) := ∀u (At (u) ∧ u ≼ x→ ∃v (At (v) ∧ v ≼ x ∧ Step2 (u, v)))

holds iff for every atom JuK (of D ) below JxK there exists an atom JvK below JxK whose measure is

two times smaller than that of JuK. Then

Seq2 (u, x) := At (u) ∧ u ≼ x ∧ Ind2 (x) ∧
∀v1 ∀v2 (At (v1) ∧ At (v2) ∧ v1 ≼ x ∧ v2 ≼ x→ ¬DEq2 (v1, v2)) ∧
∀v (At (v) ∧ v ≼ x ∧ µ ([v]) ̸= µ ([u]) → ∃w (At (w) ∧ w ≼ x ∧ Step2 (w, v)))

means that JuK is an atom, and JxK is a minimal event above JuK satisfying Ind2 (x). Similarly, we

can obtain Ind3 (x) and Seq3 (u, x) using Step3 (x, y), or Ind6 (x) and Seq6 (u, x) via

Step6 (x, y) := ∃z (Step2 (x, z) ∧ Step3 (z, y)).

Finally, we need the formula

Base (xa, xb, xc) := Disj3 (xa, xb, xc)∧
µ ([xa] ∨ [xb] ∨ [xc]) = 1 ∧ µ ([xa] ∨ [xb]) = µ ([xc]) ∧ µ ([xa]) = µ ([xb])∧
∃u (At (u) ∧ Step2 (xa, u) ∧ u ≼ xa) ∧ Ind2 (xa)∧
∃u (At (u) ∧ Step2 (xb, u) ∧ u ≼ xb) ∧ Ind2 (xb)∧
∃u (At (u) ∧ Step3 (xc, u) ∧ u ≼ xc) ∧ Ind2 (xc) ∧ Ind3 (xc) .

It guarantees that:

• JxaK, JxbK and JxcK are pairwise disjoint;

• the measures of JxaK, JxbK and JxcK are equal to 1/4, 1/4 and 1/2;

• there exist sequences ⟨ai : i ∈ N⟩ and ⟨bi : i ∈ N⟩ of elements of D such that

JxaK =
⋃

i∈N
JaiK and JxbK =

⋃
i∈N

JbiK,

and further, each JaiK and JbiK is an atom of measure 1/2i+3
;

• there exists a family ⟨cij : i, j ∈ N⟩ of elements of D such that

JxcK =
⋃

i,j∈N
JcijK,

and further, each JcijK is an atom of measure 1/ (2i+1 · 3j+1).

11



Clearly, in case Base (xa, xb, xc) holds, every atom has the form JaiK or JbjK or JcijK, since

2 ·
∑
i∈N

1

2i+3
+

∑
i,j∈N

1

2i+1 · 3j+1
=

1

2
·
∑
i∈N

1

2i+1
+
∑
i∈N

1

2i+1
·
∑
j∈N

1

3j+1
=

1

2
+

1

2
= 1.

Moreover, each of the JcijK’s is uniquely determined by its measure. In particular, Jc00K can be cap-

tured by

Start (x) := At (x) ∧ ∃y (µ ([y]) = µ (¬[y]) ∧ Step3 (y, x)).

In fact, the atoms below JxaK and JxbK play supporting roles. For instance, Step3 (JcijK, Jcij+1K) can

be justified by finding S ⊆ N such that

1

2i+1 · 3j+2
=

∑
k∈S

1

2k+3

and extending D to contain both

⋃
k∈SJakK and

⋃
k∈SJbkK. However, we shall be mainly concerned

with JxcK, which will conveniently be viewed as an infinite matrix: for any i, j ∈ N,

Ci :=
⋃

{JcijK | j ∈ N} and C∗
j :=

⋃
{JcijK | i ∈ N}

correspond to the ith row and jth column respectively; the diagonal of this matrix is

E :=
⋃

{JciiK | i ∈ N}.

To make sure that all the rows, the columns and the diagonal belong to D , one can add

Aux := ∃u∃y (Start (u) ∧ Seq2 (u, y) ∧ ∀v (At (v) ∧ v ≼ y → ∃z Seq3 (v, z)))∧
∃u∃y (Start (u) ∧ Seq3 (u, y) ∧ ∀v (At (v) ∧ v ≼ y → ∃z Seq2 (v, z)))∧
∃u∃y (Start (u) ∧ Seq6 (u, y)).

which guarantees, in particular, that for some c0, c1, . . . and c∗0, c
∗
1, . . . ,

Jc0K = C0, Jc1K = C1, . . . and Jc∗0K = C∗
0 , Jc∗1K = C∗

1 , . . .

Thus we are going to deal with L2 (ς)-structures that satisfy the sentence

Req := Tech ∧ ∃xa ∃xb ∃xc Base (xa, xb, xc) ∧ Aux.

It is straightforward to check that such structures do exist; we shall call them admissible. Further,

for every S ⊆ N2
there exists an admissible M such that⋃

(i,j)∈S

JcijK ∈ D .

This will allow us to interpret a free binary predicate on the natural numbers.

Now consider the following formulas:

Row0 (x) := ∃u (Start (u) ∧ Seq3 (u, x));

Col0 (x) := ∃u (Start (u) ∧ Seq2 (u, x));

Row (x) := ∃y ∃u
(
Col0 (y) ∧ At (u) ∧ u ≼ y ∧ Seq3 (u, x)

)
;

Col (x) := ∃y ∃u
(
Row0 (y) ∧ At (u) ∧ u ≼ y ∧ Seq2 (u, x)

)
;

Diag (x) := ∃u (Start (u) ∧ Seq6 (u, x));

Match (x, y) := ∃z (Diag (z) ∧ µ ([x] ∧ [y] ∧ [z]) ̸= 0).

12



Their meanings are clear. Note that Match (x, y) can be used to switch from rows to columns, and

vice versa: if M is an admissible L2 (ς)-structure, then for any i, j ∈ N,

M ⊩ Match
(
ci, c

∗
j

)
⇐⇒ i = j.

Let us think of natural numbers as rows. Hence the successor function is captured by Step2 (x, y).

To interpret a binary set variable, we introduce

Γ (x, y, z) := ∃y∗ (Col (y∗) ∧Match (y, y∗) ∧ µ ([x] ∧ [y∗] ∧ [z]) ̸= 0).

To see how it works, observe that for every S ⊆ N2
,

S =
{
(i, j) ∈ N2 | M ⊩ Γ (ci, cj, s)

}
,

provided that M is admissible,

⋃
(i,j)∈SJcijK belongs to D and equals JsK. Thus elements of D may

be treated as binary relations on N.

We are ready to show the Π1
1-hardness of the validity problem for flat L ♮

2 (ς)-sentences. Let Φ

be a σs-sentence in S11; so it has the form ∀Y 2Ψ where Ψ contains no set variables. Without loss of

generality, we may assume that:

• each atomic subformula of Ψ has the form

x = y or x = 0 or s (x) = y or Y 2 (x, y);

• ∨ and ∃ do not occur in Ψ, although ∧, ¬ and ∀ may occur in it.

For convenience, the set variable Y 2
will also be treated as distinguished individual variable. Now

define τ (Ψ) recursively:

τ (x = y) := µ ([x]) = µ ([y]);

τ (x = 0) := Row0 (x);

τ (s (x) = y) := Step2 (x, y);

τ
(
Y 2 (x, y)

)
:= Γ

(
x, y, Y 2

)
;

τ (Θ ∧ Ξ) := τ (Θ) ∧ τ (Ξ);
τ (¬Θ) := ¬τ (Θ);

τ (∀xΘ) := ∀x (Row (x) → τ (Θ)).

By construction, τ (Ψ) is always flat. And it is straightforward to verify that

N ⊨ Φ ⇐⇒ Req → ∀Y 2 τ (Ψ) is valid.

Finally, apply Corollary 4.2.

If we allow quantifiers over reals, then Corollary 4.3 can be used to obtain:

13



Theorem 5.2

Let ς be as before. Then the validity problem for flat L2 (ς)-sentences is Π1
∞-hard, even if we confine

ourselves to at most countable universes.

Proof. We shall employ the notation of the proof of Theorem 5.1. Again, Γ (x, y, z) will be used to

interpret a free binary set variable, which is intuitively bounded by the outermost universal quanti-

fier. As for unary set variables (each of which may be bounded by ∀ or ∃), they will be handled by

means of field variables.

For technical reasons, Req has to be extended slightly. Namely, we need to add the condition

that ensures that the collection D contains all finite unions of rows. To this end, take

Rows (x) := ∀u (At (u) ∧ u ≼ x→ ∃v (Row (v) ∧ u ≼ v ≼ x)).

Thus Rows (x) means that JxK is a union of rows. Obviously, the formula

Join (x, y, z) := µ ((([x] ∨ [y]) ∧ ¬[z]) ∨ ([z] ∧ ¬ ([x] ∨ [y]))) = 0.

says ‘JzK is the union of JxK and JyK’. Hence the sentence

Aux′ := ∀x∀y (Rows (x) ∧ Rows (y) → ∃z Join (x, y, z))

does the job. Now let Req′ denote Req ∧ Aux′. In what follows L2 (ς)-structures satisfying Req′

will be called acceptable.

As is well known, every ε ∈ [0, 1/2) can be uniquely represented as

ε =
∞∑
i=0

εi
2i+2

where each εi is either 0 or 1, and the sequence ε0, ε1, . . . contains infinitely many 0’s. It is easy to

verify that for all k ∈ N,

εk = 1 ⇐⇒
k−1∑
i=0

εi
2i+2

+
1

2k+2
⩽ ε.10

For our purposes, we can view ε as the set {i ∈ N | εi = 1}, which gives us all subsets of N whose

complements are not finite. To make this idea work, we need the formula

Init (x) := Rows (x) ∧ ∀v
(
Row (v) ∧ v ≼ x ∧ ¬Row0 (v) →

∃w (Row (w) ∧ w ≼ x ∧ Step2 (w, v))),

which says that JxK is an initial segment of the rows (thought of as natural numbers). Hence if JuK
and JvK are rows, then

Geq (u, v) := ∀x (Init (x) ∧ v ≼ x→ u ≼ x)

10
Here we identify the empty sum (in case k = 0) with 0.
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means that the probability of JuK is more than or equal to that of JvK. So

Upper (u, x) := Init (x) ∧ u ≼ x ∧ ∀y (Init (y) ∧ u ≼ y → x ≼ y).

holds iff JxK is the union of all rows that are at least as probable as JuK. Notice that if µ ([u]) ̸= 0,

then the corresponding union contains only finitely many rows, and hence belongs to D by Aux′.

Next, let

Approx (x, a, u) := ∀v (Row (v) ∧ v ≼ x→ Geq (v, u))∧
∃v

(
Row0 (v) ∧ (v ≼ x↔ µ ([v]) ⩽ a)

)
∧

∀v (Row (v) ∧Geq (v, u) →
(v ≼ x↔ ∃y (Upper (v, y) ∧ µ (([x] ∧ [y]) ∨ [v]) ⩽ a))).

It is not hard to check that for any k ∈ N, S ⊆ N and ε ∈ [0, 1/2),

M ⊩ Approx (s, ε, ck) ⇐⇒ S = {i ∈ N | i ⩽ k and εi = 1},

provided that M is acceptable,

⋃
{Ci | i ∈ S} belongs to D and coincides with JsK. Furthermore,

the sentence

Req′ → ∀a∀u (0 ⩽ a < 1/2 ∧ Row (u) → ∃xApprox (x, a, u))

is valid.
11

Consequently, for the formula

Σ (u, a) := ∃x (Approx (x, a, u) ∧ u ≼ x)

we have M ⊩ Σ (ck, ε) iff εk = 1. Thus ε plays the role of

⋃
{Ci | εi = 1}, even though the latter

does not necessarily belong to D .

We are ready to show the Π1
∞-hardness of the validity problem for flat L2 (ς)-sentences. Let Φ

be a σs-sentence in S1∞. It has the form ∀Y 2Ψ with Ψ containing no set variables. By Remark 4.5,

we may assume that

all unary set quantifiers in Ψ are relativized to Cof (X).

Next, with each unary set variable X , associate a distinguished field variable a. We then extend the

definition of τ (Ψ) given in the proof of Theorem 5.1 by adding two more cases:

τ (X (x)) := Σ (x, a);

τ (∀⋆X Θ) := ∀a (0 ⩽ a < 1/2 → τ (Θ)).

By construction, τ (Φ) is a flat L2 (ς)-sentence. And it is straightforward to check that

N ⊨ Φ ⇐⇒ Req′ → ∀Y 2 τ (Φ) is valid.

Finally, apply the corresponding analogue of Corollary 4.3.

11
Here 0 ⩽ a < 1/2 can be understood as µ (⊥) ⩽ a ∧ ∃x (µ ([x]) = µ (¬[x]) ∧ ¬µ ([x]) ⩽ a).
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In effect, Corollary 4.4 allows us to get a bit more:

Theorem 5.3

Let ς be as before. Then the validity problem for flat L2 (ς)-sentences is Π2
1-hard.

Proof. Notice that if M is an admissible L2 (ς)-structure, then the corresponding matrix JxcK can

be captured by

Matrix (x) := ∃u (Start (u) ∧ u ≼ x ∧ Ind2 (x) ∧ Ind3 (x) ∧ µ ([x]) = µ (¬[x])).

Now consider the formula

Spec (a) := ∃x (µ ([x]) = a ∧ ∃y (Matrix (y) ∧Disj2 (x, y))).

Naturally, we are going to use it to translate X ∈ X , which will lead us to the desired Π2
1-hardness

result. Call S ⊆ N suitable if its complement is not finite and

∑
i∈S 1/2

i+2 ̸∈ Q. Roughly, we want∑
i∈S 1/2

i+2
to be irrational here because Req′ implies that certain real numbers, which can be as-

sumed to be rational, satisfy Spec (a). Take

S := the collection of all suitable subsets of N.

Observe that for any S ⊆ N2
and S ⊆ S there exists an acceptable L2 (ς)-structure M such that⋃

(i,j)∈S
JcijK ∈ D and {T ∈ S | M ⊩ Spec (ϵT )} = S

where ϵT denotes

∑
i∈T 1/2i+2

. This will allow us to interpret a free unary predicate on S.

Let Φ be a σs-sentence in S21. So it has the form

∀X ∀Y 2Ψ

where Ψ contains only unary set variables and no class variables. Again, we may assume that all

unary set quantifiers in Ψ are relativized to Cof (X). Furthermore, since there is an analytical (i.e.,

definable in N by a second-order formula) one-one function from the powerset of N onto S, it can

also be assumed that

the class variable X ranges over the subsets of S.

Then we extend the definition of τ (Ψ) given in the proof of Theorem 5.2 by adding

τ (X (X)) := Spec (a).

It is easy to see that N ⊨ Φ iff Req′ → ∀Y 2 τ (Ψ) is valid. Now apply the corresponding analogue

of Corollary 4.4.

Thus we have strengthened Theorems 3.1 and 3.2 in a crucial way.
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6 The case of structures of type 1

The machinery developed in the previous section can be easily adapted to L1 by using the trans-

lation described in the proof of Theorem 6.2 in [1], which allows us to transfer complexity results

from L2 to L1. To keep our presentation reasonably self-contained, we are going to sketch more

direct arguments below.

Fix a special individual variable u. Call a regular L1 (ς)-formula flat if each of its basic subfor-

mulas is of the form

µu (ϕ) = µu (ψ) or µu (ϕ) ⩽ a

where ϕ and ψ belong to Form◦
ς , and a is a field variable. Obviously, ‘µu (ϕ) ⩽ a’ must be omitted

in the case of L ♮
1 , i.e. if we exclude field variables.

Theorem 6.1

Let ς be ⟨R2⟩ where R is a binary predicate symbol. Then the validity problem for flat L ♮
1 (ς)-senten-

ces is Π1
1-hard, even if we confine ourselves to at most countable domains.

Proof. Consider an arbitrary L1 (ς)-structure M = ⟨D, π, p⟩. Now, with each d ∈ D, associate the

corresponding event

JdK := {e ∈ D | π |= R (d, e)}.

Denote by D the collection of all such events. If x is a variable distinct from u, let us write [x] for

R (x, u). Here R (x, u) may be read as ‘x satisfies P at u’; so u is viewed as ranging over ‘worlds’.

Then we proceed as in the proof of Theorem 5.1, except that:

• µ is replaced by µu throughout;

• the expressions [u], ∀u and ∃u are avoided.

Theorem 6.2

Let ς be as before. Then the validity problem for flat L1 (ς)-sentences is Π1
∞-hard, even if we confine

ourselves to at most countable domains.

Proof. Similar to the proof of Theorem 5.2 (but using the modified notation described in the proof

of Theorem 6.1).

Theorem 6.3

Let ς be as before. Then the validity problem for flat L1 (ς)-sentences is Π2
1-hard.

Proof. Similar to the proof of Theorem 5.3.

Thus we have strengthened Theorems 2.1 and 2.3 in a crucial way.
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Remark 6.4. In effect, the necessity of having at least one binary predicate symbol in the case of

L1 is justified by Theorem 5.1 in [1], which says that if ς consists of unary predicate symbols, then

the validity problem for L1 (ς)-sentences is decidable. Moreover, we cannot obtain the complexity

results in Section 5 from the those in this section by using the translation of L1 into L2 described

in [1] (see Theorem 6.1), since the latter does not in any way make signatures smaller, so there is

no hope of turning ⟨R2⟩ into ⟨U1⟩.

7 Concerning the upper bounds

It follows from [1] that Π1
2 is an upper bound for the validity problems for L1 and L2, and if only

at most countable structures are allowed, then Π1
2 may be replaced by Π1

∞.
12

As for L ♮
1 and L ♮

2 , if

uncountable structures are not directly excluded, then a bit more work is needed.

Let M and M′
be L1 (ς)-structures. We shall say that M′

is a substructure of M if the follow-

ing two conditions are met:

i. π′
is a substructure of π, as defined in first-order logic;

ii. p′ is the restriction of p to D′
.

Clearly, (ii) implies that D \ D′
has measure zero, i.e. {d ∈ D | p (d) ̸= 0} must be a subset of D′

.

It turns out that the standard argument for the Löwenheim–Skolem theorem (in first-order logic)

can be easily adapted to L ♮
1 :

Theorem 7.1

Let M be an L1 (ς)-structure, and κ be a cardinal such that max {|ς| ,ℵ0} ⩽ κ ⩽ |D|. Then there
exists a substructure M◦ of M such that D◦ has cardinality κ, and for every L ♮

1 (ς)-formula ϕ and
any function ζ from Var to D◦,

M◦ ⊩ ϕ [ζ] ⇐⇒ M ⊩ ϕ [ζ] .

Proof. Without loss of generality, we may assume that ς contains the equality symbol. Let S0 be a

subset of D that includes {d ∈ D | p (d) ̸= 0} and has cardinality κ. As in first-order logic, we can

build a sequence

S0 ⊆ S1 ⊆ S2 . . .

of subsets of D of cardinality κ such that for each n ∈ N, every L ♮
1 (ς)-formula ϕ (x1, . . . , xm, y)

and any d1, . . . , dm ∈ Sn,

M ⊩ ∃y ϕ (d1, . . . , dm, y) =⇒ M ⊩ ϕ (d1, . . . , dm, e) for some e ∈ Sn+1. (⋆)

12
Of course, when we speak of algorithmic problems, all signatures are assumed to be computable.
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Take D◦ to be

⋃
{Sn | n ∈ N}. Clearly, D◦ has cardinality κ. Further, D◦ contains all constants of

π and is closed under all functions of π.
13

Now consider the L1 (ς)-structure

M◦ = ⟨D◦, π◦, p◦⟩

where π◦ is the substructure of π with domain D◦, and p◦ is the restriction of p to D◦. Evidently,

M◦ is a substructure of M. We want to show that for every L ♮
1 (σ)-formula ϕ and any function ζ

from Var to D◦,

M◦ ⊩ ϕ [ζ] ⇐⇒ M ⊩ ϕ [ζ] .

This can be done by induction on the depth of ϕ. The main task here is to take care of the L ♮ (ς)-

terms of the form µ(x1,...,xk) (ψ) occurring in ϕ. Observe that the inductive hypothesis implies that

for each L ♮
1 (ς)-formula ψ with dp (ψ) < dp (ϕ) and any function η from Var to D◦,

Pk
({
d⃗ ∈ Dk | M ⊩ ψ

[
ηx⃗
d⃗

]})
= Pk

({
d⃗ ∈ Dk

◦ | M ⊩ ψ
[
ηx⃗
d⃗

]})
= Pk

({
d⃗ ∈ Dk

◦ | M◦ ⊩ ψ
[
ηx⃗
d⃗

]})
= Pk

◦

({
d⃗ ∈ Dk

◦ | M◦ ⊩ ψ
[
ηx⃗
d⃗

]})
.

(where the first equality follows from P (D \D◦) = 0). The rest is easy.

For our purposes, we only need:

Corollary 7.2

An L ♮
1 (ς)-sentence is valid iff it is true in all L1 (ς)-structures with at most countable domains.

Proof. =⇒ Trivial.

⇐= Let ϕ be an L ♮
1 (ς)-sentence. Without loss of generality, we may assume that ς is finite.

Suppose that ϕ is not valid, i.e. M ⊮ ϕ for some L1 (ς)-structure M. By Theorem 7.1, there exists

a substructure M◦ of M with D◦ countable, such that M◦ ⊮ ϕ.

The case of L ♮
2 is analogous to that of L ♮

1 . Let M and M′
be L2 (ς)-structures. We shall say

that M′
is a substructure of M if the following conditions are met:

i. Ω′
is a subset of Ω, and π′

assigns to each ω ∈ Ω′
a substructure of π (ω);

ii. p′ is the restriction of p to Ω′
.

Of course, (ii) implies that Ω \ Ω′
has measure zero.

Theorem 7.3
13

To see this, assume that ϕ in (⋆) has the form c = y or f (x1, . . . , xm) = y where c is a constant symbol, and f is

an m-ary function symbol.
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Let M be an L2 (ς)-structure, κ be a cardinal such that max {|ς| ,ℵ0} ⩽ κ ⩽ |D|, and Λ be a subset
of Ω. Take

Ω◦ := Λ ∪ {ω ∈ Ω | p (ω) ̸= 0}.

Then there exists a substructure M◦ of M such that D◦ has cardinality κ, and for every L ♮
2 (ς)-for-

mula ϕ, any ω ∈ Ω◦ and function ζ from Var to D◦,

M◦, ω ⊩ ϕ [ζ] ⇐⇒ M, ω ⊩ ϕ [ζ] .

Proof. For convenience, we may assume that ς contains the equality symbol. Clearly, we can build

a sequence

S0 ⊆ S1 ⊆ S2 . . .

of subsets of D of cardinality κ such that for each n ∈ N, every L ♮
2 (ς)-formula ϕ (x1, . . . , xm, y),

any ω ∈ Ω◦ and d1, . . . , dm ∈ Sn,

M, ω ⊩ ∃y ϕ (d1, . . . , dm, y) =⇒ M, ω ⊩ ϕ (d1, . . . , dm, e) for some e ∈ Sn+1. (⋆)

Take D◦ to be

⋃
{Sn | n ∈ N}. Note that for each ω ∈ Ω◦, D◦ contains all constants of π (ω) and

is closed under all functions of π (ω). Now consider the L1 (ς)-structure

M◦ = ⟨D◦,Ω◦, π◦, p◦⟩

where π◦ assigns to each ω ∈ Ω◦ the (unique) substructure of π (ω) with domain D◦, and p◦ is the

restriction of p to Ω◦. Thus M◦ is a substructure of M. It remains to check that for every L ♮
2 (σ)-

formula ϕ, any ω ∈ Ω◦ and function ζ from Var to D◦,

M◦, ω ⊩ ϕ [ζ] ⇐⇒ M, ω ⊩ ϕ [ζ] .

This is done by induction on the depth of ϕ. Observe that the inductive hypothesis implies that for

each L ♮
2 (ς)-formula ψ with dp (ψ) < dp (ϕ) and any function η from Var to D◦,

P ({ω ∈ Ω | M, ω ⊩ ψ [η]}) = P ({ω ∈ Ω◦ | M, ω ⊩ ψ [η]})
= P ({ω ∈ Ω◦ | M◦, ω ⊩ ψ [η]})
= P◦ ({ω ∈ Ω◦ | M◦, ω ⊩ ψ [η]}).

(where the first equality follows from P (Ω \ Ω◦) = 0).

Again, we only need:

Corollary 7.4

An L ♮
2 (ς)-sentence is valid iff it is true in all L2 (ς)-structures with at most countable universes.

Proof. This is perfectly analogous to the proof of Corollary 7.2.

As far as the validity problems for L ♮
1 and L ♮

2 are concerned, Corollaries 7.2 and 7.4 allow us

to confine ourselves to at most countable structures, which can be treated as subsets of N. Then it

is straightforward to show that the corresponding problems belong to Π1
1, by using some standard

coding machinery described in [1, Section 5]; cf. [18, Section 9].

To sum up, all the lower bounds mentioned in Sections 5 and 6 turn out to be precise.
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8 Further discussion

One may wonder what would change if we modify the semantics of L1 and L2 in natural ways.

Here are two suggestions; see [9], for example.

i. We can try to allow more general (not necessarily discrete) probability measures.
14

ii. We can generalize the semantics of L2 by allowing P to depend on the choice of a possible

world, which is helpful for modeling more complex situations.

Briefly stated, the lower bound arguments provided in Sections 5 and 6 are somewhat hereditary:

expanding the semantics in a reasonable way does not affect them, provided that all measures are

real-valued. Roughly, this is because these arguments are not affected by adding more structures.

However, the upper bounds are not as uniform as one might expect, and for natural reasons:

• arbitrary — or rather, non-discrete — probability spaces cannot be directly encoded as sets of

natural numbers;

• a straightforward adaptation of the standard argument for the Löwenheim–Skolem theorem

may lead from structures to non-structures, or ‘weak’ structures of a certain kind.

Still, in the case of (ii), if we continue to use discrete distributions, then the corresponding upper

bound results can be obtained similarly. Furthermore, the completeness theorems in [9] imply the

Π1
1-boundedness of the corresponding validity problems; cf. [7, Section 3.3].

It may also be interesting to compare the present work with [18], which strengthens the earlier

hardness results of [12] and [15] in a significant way.
15

In fact, the probabilistic languages studied

in [18] are very different from L1 and L2, and unfortunately, there seems to be no nice translation

of these into L1 or L2. Moreover, some of the relevant upper bound results require very different

techniques; see [17]. Still, the lower bound arguments in [18] are based on similar ideas, and also

utilize Corollaries 4.2 and 4.3. On the other hand, the ‘flat’ fragments described in [18] look richer;

for instance, they allow inequalities between probabilities with coefficients in N.

Finally, let us consider the Π1
1-completeness result in [5]. Denote the corresponding language

by LH . Briefly, LH is rather similar to the quantifier-free fragment of L1 (where ∀ and ∃ are ex-

cluded); it has a more general semantics, but this plays no role in the lower bound argument. The

Π1
1-boundedness of the validity problem for LH can be justified by the completeness of a suitable

calculus. As for its Π1
1-hardness, the proof given in [5] makes use of iterations of µ and employs a

very rich signature which expands that of arithmetic; so the underlying technique is significantly

14
In L1 and L2, the use of discrete distributions is motivated by the well-known measurability problem: existential

individual quantifiers correspond to projections, but a projection of a measurable set is not necessarily measurable. In

effect, there are less restrictive ways to avoid this problem.

15
The technique of [19], which is useful for proving undecidability results, is based on coding finite simple graphs,

whose first-order theory is only Π0
1-complete; so it cannot give us high complexity lower bounds.
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different from that of the proof of Theorem 6.1. Moreover, quantifiers over reals, which are cru-

cial to Theorems 6.2 and 6.3, do not appear in [5], and for a good reason: an adequate infinitary

calculus cannot handle more than Π1
1.
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