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Università “Roma Tre”

Largo S. L. Murialdo 1, 00146 Roma (Italy)

(biasco@mat.uniroma3.it)

Luigi Chierchia
Dipartimento di Matematica
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Abstract

We consider the problem of the stability of action variables in properly degenerate

nearly-integrable hamiltonian systems and prove, in particular, stability results for

systems with two degrees of freedom. An application of such results to Celestial

Mechanics is presented.
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1 Introduction and main results

Consider the n-dimensional hamiltonian system

ẏ = −∂H/∂x, ẋ = ∂H/∂y, H = H0(y) + εH1(x, y; ε), (1.1)
y ∈ D, x ∈ Tn = Rn/(2πZn),

where D ⊂ Rn is an open domain and ε is a small parameter. Variables y and
x are called respectively actions and angles. We denote by y(t) = y(t; y0, x0, ε),
x(t) = x(t; y0, x0, ε), the hamiltonian flow of system (1.1) with initial data y(0) =
y0, x(0) = x0.

System (1.1) is called nearly–integrable since, for ε = 0, it can be simply
integrated:

ẏ = −∂H0/∂x = 0 , ẋ = ∂H0/∂y . (1.2)

Then the phase space M := D ×Tn is foliated by n-dimensional invariant tori

Tω0 := {y = y0 , x ∈ Tn}

on which the angles linearly evolve x(t) = ω0 t + x0, where ω0 := ∂H0/∂y|y=y0 ,
while the actions remain constant: y(t) = y0. We are interested in knowing the
behavior of y(t; y0, x0, ε) for ε �= 0.

The problem of the (in)stability of action variables in nearly–integrable
hamiltonian systems consists in (dis)proving that, for any compact set K ⊂ D ,

∃ c(ε) > 0 , c(ε) → 0 for ε → 0 , s.t. sup
t∈R

|y(t; y0, x0, ε) − y0| ≤ c(ε) ,

(1.3)
for any (y0, x0) ∈ K. Property (1.3) is often called total stability, in the sense
that it holds for all times.

1.1 Stability by KAM Theory for non-degenerate systems

The celebrated KAM Theorem assures the persistence of the majority1 of
the perturbed invariant tori for ε small, under suitable (general) hypotheses of
non-degeneracy on the integrable Hamiltonian H0.

As a byproduct, the majority of orbits is stable, in the sense that (1.3)
holds for any compact set in a “big” set MK (meaning that meas(M\MK) is
bounded by a quantity of order

√
ε).

Denote by Dh the unperturbed energy level in the space of actions:

Dh = {y ∈ D : H0(y) = h}.

Let Pn−1 be the (n − 1)-dimensional projective space and pr : Rn \ {0} →
Pn−1 the natural projection. Consider the map Φ : Dh → Pn−1, Φ(y) =
pr ◦ gradH0(y). Then the system (1.1) is called isoenergetically non-degenerate
at a point y ∈ Dh if the map Φ is a local diffeomorphism in the vicinity of y.

According to KAM-theory, for small ε, energy levels of an isoenergetically
non-degenerate system (1.1) contain a large (in measure sense) family of invari-
ant n-dimensional tori.

As it is well known, for n = 2, isoenergetical non-degeneracy prevents drift
of y-variables on trajectories since the KAM-tori are two-dimensional invariant
hypersurfaces on three-dimensional energy levels. Hence an isoenergetically non-
degenerate system with two degrees of freedom is stable (namely (1.3) holds).

On the other hand, it is believed that general isoenergetically non-degenerate
systems exhibit O(1) drift in actions2, whenever n > 2. Such drift is known as
Arnold diffusion, since Arnold showed its existence in a simple ad hoc model in

1Namely the measure of the complement of the union of the persistent invariant tori does
not exceed a quantity of order

√
ε.

2Namely there exist a constant c > 0, an ε-depending family of initial data (yε
0, xε

0) and
times Tε such that

|y(Tε; y
ε
0, xε

0, ε) − yε
0| ≥ c .
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[4] and conjectured3 its genericity in [3]: “the typical case in higher-dimensional
problems is topological instability: through an arbitrarily small neighborhood
of any point there pass phase trajectories along which the actions drift away
from their initial value by a quantity of order one”4.

Genericity of the Arnold diffusion was announced in [18], [19].
Finally we observe that, according to the Nekhoroshev theory (see [20]),

average velocity of such a drift is exponentially small in ε provided H0 satisfies
suitable general “steepness” conditions (see [20] or the recent preprint [21]).

1.2 Isoenergetically and properlydegenerate systems with
two degrees of freedom

From now on we shall consider nearly-integrable Hamiltonian systems with two
degrees of freedom.

Suppose that system (1.1) is isoenergetically degenerate on a certain energy
level. In this case even for n = 2 drift of action variables is possible. Indeed,
consider the Nekhoroshev example (see [20]):

H =
1
2
(y2

1 − y2
2) − ε sin(x1 + x2). (1.4)

The system is isoenergetically degenerate on the unperturbed energy level D0.
The solution y1(t) = y2(t) = εt, x1(t) = εt2/2 = −x2(t), presents O(1) drift of
actions along D0 with velocity of order ε.

In Section 2 below, generalizing Nekhoroshev example, we will describe a
simple “general” method apt to construct drifting orbits for isoenergetically
degenerate systems in two degrees of freedom.

Let us point out that the study of degenerate systems is not only a mathe-
matical question but might be of interest also from a physical point of view. In
fact, a typical feature in Celestial Mechanics is that the unperturbed system is
properly degenerate, i.e., the unperturbed Hamiltonian H0 in (1.1) does not de-
pend upon all action variables. In such a case the isoenergetical non–degeneracy
is obviously strongly violated.

Some important examples of properly degenerate models arising in Celestial
Mechanics are: the three-body problem (see, e.g., [17], [8]); the problem of
fast rotations of a symmetric rigid body (see [6], [7], [5]) and the D’Alembert
planetary “spin/orbit” model (see, e.g., [14], [12], [13]). The D’Alembert model
will be taken up in section 4 below and will, somehow, used as a “guide-line”
for our investigations.

In general, properly degenerate systems are unstable, i.e., (1.3) does not
hold. For example, in the system governed by the Hamiltonian

H(y1, y2, x1, x2; ε) := H0(y1) + εH1 , where H1 :=
y2
2

2
+ cos x2 ,

all trajectories with initial positions such that (y2, x2) �= (0, kπ) violate (1.3).
Hence, in order to have stability, one has to make suitable assumptions on the
perturbation H1. Such asumtpions arise naturally in the Celestial Mechanical
examples mentioned above. One requires that the perturbation H1 is of the
form:

H1(y1, y2, x1, x2; ε) := H01(y1, y2, x1) + O(εc) , c > 0 . (1.5)

Here and in the following by O(εc), c > 0, we mean a function that, divided by
εc, is smooth (or analytic) in x and y and bounded in all its variables as ε → 0.
For example, in [11], total stability is proved for the “model problem”

H0 =
y2
1

2
, H01 := ±y2

2

2
+ cos x1 . (1.6)

3The conjecture is stronger than the simple negation of (1.3) and even of the existence of
a drift.

4Compare [1] pg. 189 from which the citation is taken.
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In this paper, in order to prove stability results in two degrees of freedom, we
will assume the following stronger assumption on the intermediate term H01: we
shall assume that H01 is independent on the angle x1 and consider perturbations
of the form

H1 := H01(y1, y2) + O(εc) , c > 0 . (1.7)

A first answer on the stability of systems governed by Hamiltonians of the
form

H(y1, y2, x1, x2; ε) := H0(y1) + εH01(y) + O(ε2) , (1.8)

was given by Arnold (see [3] and compare also [1], Chapter 5, Section 3).

Theorem ([3]) Let H be as in (1.8) and assume that the perturbation removes
the degeneracy, in the sense that,

∂H0

∂y1
�= 0 ,

∂2H01

∂y2
2

�= 0 . (1.9)

Then, for all ε small enough, total stability holds.

However a general function H0(y1) will have critical points (where (1.9) is
violeted) and one may pose the question whether in the vicinity of a critical
point ycr

1 of ∂H0/∂y1 drifting phenomena may occur or total stability holds.

1.3 Main results: stability theorems for properly degen-
erate systems in two degrees of freedom

Let D be an open bounded set in R2, let y ∈ D, x ∈ T2, ε ≥ 0 and consider a
system with Hamiltonian

H(y, x, ε) = H00(y1) + εH01(y) + εaHa(y, x) + O(εa1), 1 < a < a1 . (1.10)

We shall assume H to be smooth enough or real-analytic. In the following for
“(total) stability” we mean that there exists a constant s > 0 such that (1.3)
holds with c(ε) := εs. Notation: from now on prime denotes derivative with
respect to y2.

Theorem 1 Suppose that

(1) the critical points of H00 are non-degenerate,

(2) for all y0
1 fixed, y2 �→ H ′′

01(y
0
1 , y2) is not identically 0 on any open subset of

D ∩
(
{y0

1} × R
)
.

Then the following condition is sufficient for the stability of system (1.10): for
any critical point ycr

1 of H00 and for any constant h the function H01(ycr
1 , y2) is

not a quadratic polynomial in y2 of the form

d(y2 − r)2 + h , d
∂2H00

∂y2
1

(ycr
1 ) < 0 , (1.11)

for some d, r ∈ R.

Unfortunately in our astronomical guide-problem (the D’Alemebert spin/orbit
problem) H01(ycr

1 , y2) is exactly of the form described in (1.11) and the previous
Theorem cannot be applied. In such cases, one have to look at “higher order”
non degeneracy conditions as the ones described in the following

Theorem 2 Suppose that a < 3/2 and hypotheses (1)–(2) of Theorem 2 hold,
but, for some critical point ycr

1 of H00, F (y2) := H01(ycr
1 , y2) is of the type

described in (1.11), namely

F (y2) ≡ d(y2 − r)2 + h for some d , r , h ∈ R . (1.12)
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Then stability nevertheless takes place provided

F a(y2) :=
1

(2π)2

∫
T2

Ha(ycr
1 , y2, x) dx (1.13)

is not a quadratic polynomial having r as a root, namely

F a(y2) �≡ (uy2 + v)(y2 − r) for some u , v ∈ R . (1.14)

Let us conclude this introduction by loosely describing the application of the
above results to the D’Alembert problem.
The D’Alembert planetary model is a nearly-integrable, properly–degenerate,
time–dependent Hamiltonian system with two (and a half) degrees of freedom
describing the positions of a planet, modelled by a nearly spherical ellipsoid,
whose center of mass revolves on a Keplerian nearly circular ellipse around a
fixed star ( see [14], [12], [13] and § 4 below). In particular one is interested
in studying the resulting motions in phase region close to exact “spin/orbit”
resonances, i.e., in regions corresponding to unperturbed motions where the
day of the planet is commensurable with the year (the period of the Keplerian
orbit of the center of mass)

Time is a “fast variable”, which can be averaged out up to exponentially
small (in the main perturbative parameter5) terms. The two-degree-of-freedom
(time independent) resulting Hamiltonian is usually called “the effective Hamit-
lonian”.

Theorem 3 For all, but a finite number, of spin/orbit resonances, the effective
Hamiltonian of the D’Alembert planetary model is totally stable. Consequently
the action variables of the full three-degree-of-freedom D’Alembert Hamiltonian
are stable for exponentially long time.

More precise statements (and comparison with known results) are given in
§ 4; see, in particular, Theorems 8 and 9)

2 Instability in degenerate systems: resonant
channels

Definition 2.1 Let H0 be isoenergetically degenerate at every point of a suitable
connected component Eh of Dh. Suppose that gradH0|Eh

�= 0. Then Eh is called
a channel.

Proposition 2.1 Every channel is a part of a straight line.

Proof. If ω := (ω1, ω2) := gradH0(y), the isoenergetic degeneracy implies
that pr(ω) is constant on Eh. Hence, the direction of gradH0 is the same on
Eh.

Below, we shall always assume that channels correspond to the energy value
h = 0.

Corollary 2.1 Let E := E0 be a channel. Then for some constant vector
ω̃ ∈ R2 and some function g(y) smooth in a neighborhood of E

H0(y) =
〈ω̃, y〉
g(y)

. (2.1)

Definition 2.2 Let us consider a channel E. If for some integer j1, j2, with
gcd(j1, j2) = 1, we have pr(ω1, ω2) = (j1, j2) on E, we call E resonant.

5In the D’Alembert problem there are two perturbative parameters, namely, the oblateness
ε of the planet and the eccentricity µ of the Keplerian fixed orbit around which is revolving
the center of mass of the ellipsoidal planet. Usually one takes µ = εc for some prefixed c > 0.
See § 4 for more information.
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Remark 2.1 In a properly degenerate system every channel is resonant.

Let E be a resonant channel of system (1.1). According to Proposition 2.1, there
exists I ⊂ E and suitable a, b ∈ D, λ > 0, m1, m2 ∈ Z2 with gcd(m1, m2) = 1,
such that a − b = λµ = λ(−m2, m1) and

I = {y ∈ R2 : y = as + b(1 − s), s ∈ [0, 1]} . (2.2)

We construct the integer matrix

A =
(

m1 m2

n1 n2

)
, detA = 1, A−1 =

(
n2 −m2

−n1 m1

)
, (2.3)

and define the function

χ(η, ξ) =
1
2π

∫ 2π

0

H1

(
b + µη, AT

(
τ
ξ

))
dτ, ξ ∈ T1, η ∈ [0, λ].

We shall assume that the perturbation H1 satisfies the following condition

C1. There exists a constant h0 and a function φ : [0, λ] → T1 such that

χ(η, ξ)|ξ=φ(η) ≡ h0 and
∣∣∣∣∂χ

∂ξ

∣∣∣
ξ=φ(η)

∣∣∣∣ ≥ const. > 0 . (2.4)

Theorem 4 An isoenergetically degenerate system (1.1) admitting a resonant
channel is unstable for any perturbations H1 verifying C1. That is, for all ε
sufficiently small, there exists a solution (y(t), x(t)) of system (1.1) such that

|y(0) − b| < c1ε, |y(T ) − a| < c2ε, c3ε
−1 < |T | < c4ε

−1.

Remark 2.2 The time T is positive (respectively, negative) if in Condition C1
∂χ
∂ξ |ξ=φ(η) > 0 (respectively, < 0).

From the previous Theorem and Remark 2.1 we have the following

Corollary 2.2 A properly degenerate system (1.1) in two degrees of freedom is
unstable for any perturbations H1 verifying C1.

Consider as a trivial example the system with Hamiltonian (1.4). Then
E = {y ∈ R2 : y1 = y2 > 0} is a resonant channel. We take I satisfying (2.2)

with a = α
( 1

1

)
, b = β

( 1
1

)
, 0 < β < α. Then µ = (1, 1), λ = α− β. We can

put A =
( 1 −1

0 1

)
. Then

χ(η, ξ) = − 1
2π

∫ 2π

0

sin ξ dτ = − sin ξ

and condition C1 obviously holds.
Proof of Theorem 4. Without loss of generality we assume that b = 0. Since

the channel E is resonant, H0 satisfies (2.1) with ω̃ = (m1, m2).
Consider the linear symplectic change of variables (y, x) → (Y, X)

Y = Ay, x = AT X.

In the new variables the interval I and the Hamiltonian (1.1) take the form

I = {Y1 = 0, Y2 ∈ [0, λ]},
H(Y, X; ε) = Y1/G(Y ) + εH1(A−1Y, AT X; ε), G(Y ) = g(A−1Y ).

We reduce the order on the energy level

H = εh0, (2.5)
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where h0 is a suitable constant such that condition C1 holds. The solution of
equation (2.5) with respect to Y1 has the form

Y1 = εG(0, Y2)
(
h0 − H1(0, m1Y2, A

T X; 0)
)

+ O(ε2), (2.6)

where m1 is defined as above. Now τ = X1 plays the role of the new time and
εĤ = −Y1(Y2, τ, X2; ε) of the new Hamiltonian. Since τ is the only fast variable
in this system, the dynamics on time interval τ ∼ ε−1 is determined with
precision of order ε by the averaged system i.e., the system with Hamiltonian

εĤ0 = −εG(0, Y2)
(
h0 − χ(Y2, X2)

)
(see for example, [2]). Condition C1 implies that the averaged system has a
solution which goes along the curve {χ = h0} with velocity of order ε and
projection of this curve to the line Y2 covers the interval [0, λ].

3 Proofs of the stability theorems

3.1 Technical Lemmata

We now state two classical results. The first one is a normal form theorem, the
second one a KAM theorem (such results are derived by Lemma 5.2 and Lemma
5.3 of [9] respectively, while a detailed exposition on normal forms and KAM
theory can be found e.g. in [15]). Finally the third result is an ad hoc corollary
of the previous two results which will be useful to prove our stability results.

Theorem 5 Consider a real analytic Hamiltonian H := H(y, x; t) := h(y) +
f(y, x; t) defined for t ∈ T, x ∈ Ts := {x ∈ C s.t. |Im x| < s } and y ∈ I
:= [y−, y+], for y− < y+, with analytic extension on Ir := {y ∈ C, s.t.∃ y∗ ∈
I, |y − y∗| < r}, for 0 < r, s ≤ 1. Let α := min{1/2, infy∈Ir |h′(y)|}. There
exists a small constant c (independent on r and α) such that, if for some K ≥ 1

β := sup
y∈Ir, x∈Ts, t∈T

|f(y, x; t)| ≤ crα/K ,

then there exists a time depending analytic canonical transformation

Φ : (ỹ, x̃; t) ∈ Ir/2 × Ts/6 × T −→ (y, x) ∈ Ir × Ts ,

such that, in the new variables (ỹ, x̃) the new Hamiltonian is

H̃ := h(ỹ) + g(ỹ) + f̃(ỹ, x̃; t)

with

sup
y∈Ir/2

|g(y)| ≤ 2β , sup
y∈Ir/2, x∈Ts/6, t∈T

|f̃(y, x; t)| ≤ β exp(−cK) ,

and
|y − ỹ| ≤ β/c .

Theorem 6 Consider a Hamiltonian H defined as in the previous theorem.
Assume that δ := infy∈Ir

|h′′(y)| > 0. Take 0 < γ < 1 and define

A := 1 + sup
y∈Ir

(|h′(y)|2 + |h′′(y)|) ,

F := Aγ−2 sup
y∈Ir, x∈Ts, t∈T

|f(y, x; t)| ,

B := 1 + c1
γ

Ar| lnF |c2
,

F̂ := c3BA2δ−2F | lnF |c4

γ̂ := c5Aδ−1γ ,

where ci are suitable constants. Suppose that F̂ ≤ 1, then, due to the preserva-
tion of KAM tori, the evolution of y(t) remains bounded, namely

|y(t) − y(0)| ≤ 2 max{rF̂ , γ̂} . (3.1)

7



Theorem 7 Consider a real analytic Hamiltonian H(y, x, t; ε) defined for y, x, t
as above and ε small. Suppose that H has the form

H := εκ1

(
h(y; ε) + εκ2f(y, x, t; ε)

)
for some κ1, κ2 > 0. Suppose that

r ≥ εσ1 , inf
y∈Ir

|h′(y)| ≥ εσ2 , inf
y∈Ir

|h′′(y)| ≥ εσ3 ,

for σ1 + σ2 < κ2, σ3 > 0 . Then the action y is stable, namely there exists a
σ4 > 0 such that

|y(t) − y(0)| ≤ εσ4 , ∀ t ∈ R .

Proof. Since σ1+σ2 < κ2 we can apply Theorem 5 obtaining a O(εκ1+κ2)–close
to the identity canonical transformation after which the perturbation becomes
exponentially small (w.r.t. ε). Then we can apply Theorem 6 with γ small
enough such that γ̂ = O(εκ1+κ2), noting that condition F̂ ≤ 1 is surely verified
for ε small enough since the perturbation is exponentially small. Therefore
stability follows by (3.1) with any σ4 < κ1 + κ2 (and ε small enough).

3.2 Proof of Theorem 1

Let y0 be initial condition for the variable y. We put

ω =
∂H00

∂y1
(y0

1).

We distinguish two cases: |ω| > Cε1/2 and |ω| ≤ Cε1/2. In the first case we
reduce the order on the energy level and, since the obtained system is non
degenerate, we can directly apply KAM Theory, namely Theorem 7, getting
stability. The second case is more complicated. After reducing the order on the
energy level, we have that the new time of the obtained (1 + 1/2)–degrees–of–
freedom system is a fast angle, so we average with respect to it. To get some
“twist” condition for the averaged Hamiltonian, we have to construct action–
angle variables that integrate the one dimensional system obtained neglecting
the time–dependent term. After such last change of variables the twist condition
follows from the hypothesis (1.11) of Theorem 1 and, again by KAM Theory,
we get stability.

Case 1. |ω| > Cε1/2 with large constant C.
Putting

h = H(y0, x0, ε) = H00(y0
1) + εH01(y0) + O(εa),

we reduce the order on the energy level H = h. If C is large enough we can find
a unique solution of the equation H(y, x, ε) = h with respect to y1, which has
the form y1 = y0

1 − χ(y2, x, ε), where

χ(y2, x, ε) := ω

(
g(y2; ε) + O

(
ε2

ω3
+

εa

ω2

))
. (3.2)

Indeed the equation H = h can be written, dividing by ω2, in the form

−ϕ(χ) +
ε

ω2
g̃(y2) + O

(
ε

ω2
χ +

εa

ω2

)
= 0 , (3.3)

where

ϕ(χ) := ϕ(χ; y0
1) := ω−2[H00(y0

1) − H00(y0
1 − χ)] ,

g̃(y2) := H01(y0
1 , y2) − H01(y0) .

Let us denote by ξ → ϕ−1(ξ; y0
1) the inverse function of ϕ in a neighborhood of

zero (such inverse function exists since ∂χ(0; y0
1) = 1

ω �= 0). Let us consider

ψ(ξ) := ψ(ξ; y0
1) :=

1
ω

ϕ−1(ξ; y0
1) .

8



We note that ψ can be extended to a smooth function even in y0
1 = ycr

1 (where
ω = 0), indeed it results that ∂ξψ(0; ycr

1 ) = 1, ∂2
ξ2ψ(0; ycr

1 ) = ∂2H00(ycr
1 ), etc.

By (3.3) we get

χ = ω ψ

(
ε

ω2
g̃(y2) + O

(
ε

ω2
χ +

εa

ω2

))
.

Since ψ(ξ) = ξ + O(ξ2) it results that χ = O(ε/ω). Hence χ is of the form
described in (3.2) with

g(y2; ε) := ψ
( ε

ω2
g̃(y2)

)
. (3.4)

Let us define g(y2; ε) := ψ(εg̃(y2)) and ε := ε/ω2. We have g(y2; ε) = g(y2; ε)
and

g′(y2; ε) = g′(y2; ε) = ε∂ξψ(εg̃(y2))g̃′(y2)
= ε∂ξψ(εg̃(y2))H ′

01(y
0
1 , y2) , (3.5)

g′′(y2; ε) = g′′(y2; ε) = ε

[
ε∂2

ξ2ψ(εg̃(y2))
(
g̃′(y2)

)2

+ ∂ξψ(εg̃(y2))g̃′′(y2)
]

= ε [εκ(y2, ε) + k(y2)] , (3.6)

where

k(y2) := H ′′
01(y

0
1 , y2) (3.7)

κ(y2, ε) := ∂2
ξ2ψ(εg̃(y2))

(
H ′

01(y
0
1 , y2)

)2

+
∂ξψ(εg̃(y2)) − 1

ε
H ′′

01(y
0
1 , y2)

(note that κ is analytic also in ε = 0 since ∂ξψ(0) = 1).
Then on the energy level H = h the system is determined by the equations

dx2

dτ
=

∂χ

∂y2
,

dy2

dτ
= − ∂χ

∂x2
, τ = x1, χ = χ(y2, τ, x2, ε). (3.8)

The Hamiltonian χ can be regarded as a perturbation of

χ0(y2; ε) := ωg(y2; ε) .

1A. First assume that |g′(y0
2 ; ε)| ≥ εεσ and |g′′(y0

2 ; ε)| ≥ εεσ with sufficiently
small σ > 0. Then the system (3.8) is non-degenerate. We can apply Theorem
7 with analyticity radius r := const εσ, for a suitable const > 0 small, obtaining
stability for y2(t) and, hence, for y1(t).

1B. Now suppose that |g′(y0
2 ; ε)| or |g′′(y0

2 ; ε)| < εεσ. Fix σ̃ > 0 (small
enough). If |y2(t) − y0

2 | < 2εσ̃ for all t ∈ R we get stability. Otherwise there
exists t∗ ∈ R such that |y2(t∗) − y0

2 | = 2εσ̃, while |y2(t) − y0
2 | < 2εσ̃ ∀ |t| < |t∗|.

Let y∗
2 := y2(t∗).

The idea is to use condition (2) of Theorem 1 in order to prove that, even if
|g′(y0

2 ; ε)| or |g′′(y0
2 ; ε)| can be small, nevertheless |g′(y∗

2 ; ε)| and |g′′(y∗
2 ; ε)| must

be sufficiently large (taking σ̃ small enough).
We need the following elementary

Lemma 3.1 Let k(y2), κ(y2, ε) be two analytic functions defined on some com-
pact set with k not identically zero. There exist ε̂, ŝ, ĉ, δ̂ > 0 such that, if |ε| ≤ ε̂

and 0 < δ ≤ δ̂, then
|εκ(y2, ε) + k(y2)| ≤ δ

only for y2 belonging to a finite set of intervals whose length does not exceed
ĉδŝ.

Due to condition (2) of Theorem 1, recalling (3.5)-(3.7) and applying the pre-
vious Lemma, we have, for σ̃ small enough6, that |g′(y∗; ε)|, |g′′(y∗; ε)| ≥ εεσ

6Uniformly in the compact set in which we want to prove stability.
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and we reduce the situation to the case 1A, with initial data y∗ (noting that
|∂y1H00(y∗

1)| ≥ Cε1/2/2).

At the end of this case 1, we give a simple example in which we can explicitly
evaluate the function g in (3.2). Let us set H00(y1) := y2

1/2. Then ω = y0
1 and

the functions ϕ, ψ, g take the simple form

ϕ(χ; y0
1) =

χ

y0
1

− 1
2

(
χ

y0
1

)2

, ψ(ξ; y0
1) = 1 −

√
1 − 2ξ ,

g(y2; ε) = 1 −
√

1 − 2εg̃(y2)/ω2 .

Case 2: |ω| < Cε1/2.
According to condition (1), we have: y0

1 = ycr
1 +

√
εy∗

1 , where ycr
1 is a critical

point of H00 and |y∗
1 | < C1 with sufficiently large constant C1.

2A. First, assume that |y∗
1 | > εσ, where σ > 0 is again a small constant.

We put

w := ∂2H00
∂y2

1
(ycr

1 ), λ := (y∗
1)2w,

F a(y0
2) := 1

(2π)2

∫
T2 Ha(ycr

1 , y0
2 , x) dx,

F (y0
2) := H01(ycr

1 , y0
2), µ := F a(y0

2) − Ha(ycr
1 , y0

2 , x0).

We note that w �= 0 since ycr
1 is non degenerate. Below without loss of generality

we assume that
ycr
1 = 0, H00(0) = 0 ,

so that y0
1 =

√
εy∗

1 . Consider the new action variables ỹ:

y1 = y0
1 + εa−1ỹ1, y2 = y0

2 + εa−1ỹ2. (3.9)

To reduce the order on the energy level H = εh with

εh = H(y0, x0, ε)
= H00(y0

1) + εF (y0
2) + εaHa(0, y0

2 , x0) + O(ε3/2 + εa1), (3.10)

we solve the equation

H(y0
1 + εa−1ỹ1, y

0
2 + εa−1ỹ2, x) = εh (3.11)

with respect to ỹ1. Developing H00 around the critical point ycr
1 = 0 we get

H00(y0
1) =

1
2
w(y0

1)2 + O((y0
1)3) =

1
2
εw(y∗

1)2 + O(ε3/2) .

Hence

εh =
1
2
εw(y∗

1)2 + εF (y0
2) + εaHa(0, y0

2 , x0) + O(ε3/2 + εa1) ,

from which we obtain

λ = 2
(
h − F (y0

2) − εa−1Ha(0, y0
2 , x0)

)
+ O(ε1/2 + εa1−1). (3.12)

According to definition of λ (and also using the fact that both w and λ are
different from 0) we get λw > 0. Multipling (3.12) by w:

λw = 2
(
h − F (y0

2)
)
w + O(εa−1 + ε1/2) > 0 ,

we finally obtain (
h − F (y0

2)
)
w > 0 . (3.13)

NOTATION From now on, given 0 < σ < α, we denote f = Oσ(εα) if
f = O(εα−nσ) for a suitable 0 ≤ n < α/σ. For example we will write Oσ(ε)
instead of O(ε1−σ) or O(ε1−2σ), provided σ < 1/2.
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Lemma 3.2 Equation (3.11) has a unique solution of the form

ỹ1 = −Y (ỹ2, x1, x2, ε) , (3.14)

where

Y :=
√

ε

wy∗
1

(
Φ0 + Φ1ỹ2 + εa−1Φ2ỹ

2
2 + ε2a−2Φ3ỹ

3
2 + Oσ(ε3a−3ỹ4

2)
)
.

The functions Φ0,1,2,3 are as follows:

Φ0(x, ε) = Ha(0, y0
2 , x) − Ha(0, y0

2 , x0) + Oσ(ε1/2 + εa−1 + εa1−a), (3.15)

Φ1(x, ε) = F ′(y0
2) +

εa−1µ

λ
F ′(y0

2) + εa−1
(
H ′

a(0, y0
2 , x) + ϕ1(y0

2 , x)
)

+Oσ(ε2a−2 + ε1/2 + εa1−1), (3.16)

Φ2(x, ε) =
1
2
F ′′(y0

2) +
1
2λ

(F ′)2(y0
2)

+
εa−1µ

2λ

(
F ′′(y0

2) +
3
λ

(F ′)2(y0
2)

)
+εa−1

(1
2
H ′′

a (0, y0
2 , x) +

1
λ

F ′(y0
2)H ′

a(0, y0
2 , x) + ϕ2(y0

2 , x)
)

+Oσ(ε2a−2 + εa−1/2 + ε1/2 + εa1−1), (3.17)

Φ3(x, ε) =
1
6
F ′′′(y0

2) +
1

2λ2
F ′(y0

2)Φ̂ + Oσ(εa−1 + ε1/2) . (3.18)

Here λ = λ(y0
2) satisfies (3.12) and the functions ϕ1 and ϕ2 have zero average

in x since

ϕ1(y0
2 , x) :=

F ′(y0
2)

λ
ϕ0(y0

2 , x) ,

ϕ2(y0
2 , x) :=

1
2λ

(
F ′′(y0

2) +
3
λ

(
F ′(y0

2)
)2

)
ϕ0(y0

2 , x) ,

ϕ0(y0
2 , x) := Ha(0, y0

2 , x) − F a(y0
2) .

Finally

Φ̂(y0
2) : = 2(h − F (y0

2))F ′′(y0
2) + (F ′(y0

2))2 (3.19)

= λF ′′(y0
2) + (F ′(y0

2))2 + εa−12H1(0, y0
2 , x0)F ′′(y0

2) + Oσ(ε
1
2 + εa1−1).

Remark 3.1 Obviously, explicit terms in (3.16)–(3.17) of order εa−1 make
sense only if a < 3/2. Otherwise they are suppressed by the error terms.

Proof of Lemma 3.2 (see Appendix) is based on a direct calculation.
The function

Y (ỹ2, τ, x2, ε), τ = x1

can be regarded as the new Hamiltonian:

dx2

dτ
=

∂Y

∂ỹ2
,

dỹ2

dτ
= − ∂Y

∂x2
.

The angular variable τ is fast. Therefore we can perform averaging w.r.t. τ
by a Oσ(

√
ε)-close to the identity time–dependent canonical transformation

(p, q, τ) → (ỹ2, x2, τ) with ỹ2 := p +
√

ε
y∗
1
ỹ∗
2(p, q, τ, ε), x2 := q +

√
ε

y∗
1
x∗

2(p, q, τ, ε).
The above-mentioned canonical transformation can be obtained by a composi-
tion of four different canonical transformations. Let p0 := ỹ2, q0 := x2. The
transformations

pj = pj(pj+1, qj+1, τ) , qj = qj(pj+1, qj+1, τ) for j = 0, 1, 2, 3 ,

associated to the time–dependent generating functions

pj+1qj +
√

ε

y∗
1

Sj(pj+1, qj , τ, ε)
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whit

S0 := S∗
0 , S1 := p2S

∗
1 , S2 := εa−1p2

3S
∗
2 , S3 := ε2a−2p3

4S
∗
3

and

S∗
j := S∗

j (qj , τ) :=
1
w

∫ τ

0

[
1
2π

∫ 2π

0

Φj(q, ξ)dξ − Φj(q, s)
]

ds .

The transformations are implicitly given by the equations

pj = pj+1 +
√

ε

y∗
1

∂qj
Sj(pj+1, qj , τ, ε) , qj+1 = qj +

√
ε

y∗
1

∂pj+1Sj(pj+1, qj , τ, ε) ;

notice that the transformed Hamiltonians contains the terms
√

ε
y∗
1
∂τSj , which

are exactly responsible for the cancellation of the fast oscillating terms. Finally
p := p4 and q := q4.
After this transformation the new Hamiltonian is

Ỹ (p, q, τ, ε) :=
√

ε

wy∗
1

(
φ0 + φ1p + εa−1φ2p

2 + ε2a−2φ3p
3 + Oσ(ε3a−3p4)

)
,

where

φj(q, ε) :=
1
2π

∫ 2π

0

Φj(q, τ)dτ + Oσ(
√

ε) for j = 0, 1, 2, 3 . (3.20)

We note that, denoting

F̃a(y0
2 , q) :=

1
2π

∫ 2π

0

Ha(0, y0
2 , τ, q)dτ, ϕ̃2(y0

2 , q) :=
1
2π

∫ 2π

0

ϕ2(y0
2 , τ, q)dτ,

we have, by (3.19),

φ1 = F ′ + Oσ(εa−1 + ε1/2) (3.21)

φ2 =
Φ̂
2λ

+ Oσ(εa−1 + ε1/2) (3.22)

=
Φ̂
2λ

+
εa−1

2λ

(
− 2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3
µ

λ
(F ′)2 + λF̃ ′′

a + 2F ′F̃ ′
a + 2λϕ̃2

)
+Oσ

(
ε2a−2 + εa−1/2 + ε1/2 + εa1−1)

)
(3.23)

φ3 =
1
6
F ′′′ +

1
2λ2

F ′Φ̂ + Oσ(εa−1 + ε1/2) . (3.24)

Suppose now that7

|F ′(y0
2)| > εσ with sufficiently small σ > 0 . (3.25)

We consider the one-dimensional system with energy

E := φ0(q) + φ1(q)p + εa−1φ2(q)p2 + ε2a−2φ3(q)p3 , (3.26)

for which we want to introduce a new couple of action-angle variables P, Q such
that, after this canonical change of coordinates the energy E is a function only
of the new action P , namely E = E(P ). In order to define P we express p as a
function of E and q:

p = p(E, q)

=
E − φ0

φ1
− εa−1 (E − φ0)2φ2

φ3
1

(3.27)

+ε2a−2

(
2(E − φ0)3φ2

2

φ5
1

− (E − φ0)3φ3

φ4
1

)
+ Oσ(ε3a−3) .

7If |F ′(y0
2)| ≤ εσ , slightly changing y0

2 , we can get (3.25) (arguing as in case 1B).
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Let
S(E, q) :=

∫ q

0

p(E, q) dq .

We define

P (E) :=
1
2π

S(E, 2π) =
1
2π

∫ 2π

0

p(E, q) dq . (3.28)

We observe that

P (E) =
E − µ

F ′ + Oσ(εa−1 + ε1/2 + εa1−a) (3.29)

Moreover we have

Ṗ (E) =
1
2π

∫ 2π

0

∂Ep(E, q) dq (3.30)

=
1
2π

∫ 2π

0

[
1
φ1

− εa−1 2(E − φ0)φ2

φ3
1

(3.31)

+ε2a−2

(
6(E − φ0)2φ2

2

φ5
1

− 3(E − φ0)2φ3

φ4
1

)
+ Oσ(ε3a−3)

]
dq.(3.32)

and

P̈ (E) =
1
2π

∫ 2π

0

[
− εa−1 2φ2

φ3
1

+ 6(E − φ0)ε2a−2

(
2φ2

2

φ5
1

− φ3

φ4
1

)
+ Oσ(ε3a−3)

]
dq .

(3.33)
So we have that P (E) is invertible and the new Hamiltonian is E(P ) with
E(P (E)) = E, P (E(P )) = P with

E′(P ) =
1

Ṗ (E(p))
(3.34)

E′′(P ) = −P̈ (E(P ))[E′(P )]3 . (3.35)

Since, by (3.30)

Ṗ (E) =
1
F ′ + Oσ(εa−1 + ε1/2),

from (3.34) we have
E′(P ) = F ′ + Oσ(εa−1ε1/2) . (3.36)

Now we can define the new angle

Q(P, q) := ∂P S(E(P ), q) = E′(P )∂ES(E(P ), q)

= E′(P )
∫ q

0

1
φ1

+ Oσ(εa−1)

=
(
F ′ + Oσ(εa−1ε1/2)

) ∫ q

0

1
F ′ + Oσ(εa−1 + ε1/2)

= q + Oσ(εa−1 + ε1/2) .

We now evaluate

− P̈ (E)
εa−1

=
1
2π

∫ 2π

0

[
−2φ2

φ3
1

+ 6(E − φ0)εa−1

(
2φ2

2

φ5
1

− φ3

φ4
1

)
+ Oσ(ε2a−2)

]
dq .

(3.37)
If Φ̂ �= 0 we simply have

− P̈ (E)
εa−1

=
1

λ(F ′)3
Φ̂ + Oσ(εa−1 + ε1/2)

and

E′′(P ) = εa−1

(
Φ̂
λ

+ Oσ(εa−1 + ε1/2)

)
. (3.38)
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We remark that the general solution of the equation Φ̂ := 2(h−F )F ′′+ (F ′)2 = 0
is as follows8: F (y) = d(y−r)2+h. Moreover by (3.13) we obtain dw < 0 namely
(1.11).

On the other hand, if F has the form F (y) = d(y − r)2 + h, which implies
Φ̂ ≡ 0 and F ′′′ ≡ 0, we have

2φ2

φ3
1

=
1

λ(F ′)3
(
− 2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3µ(F ′)2/λ + λF̃a

′′
+ 2F ′F̃a

′)
+Oσ(εa−1 + ε1/2 + ε3/2−a + εa1−a),

φ2
2

φ5
1

= Oσ(ε2a−2 + ε),

φ3

φ4
1

= Oσ(εa−1 + ε1/2) .

Collecting the previous equalities we have

− P̈ (E)
ε2a−2

=
−2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3µ(F ′)2/λ + λFa
′′

+ 2F ′Fa
′

λ(F ′)3

+Oσ(εa−1 + ε1/2 + ε3/2−a + εa1−a) ,

from which (and also using (3.35) and (3.36)) we finally obtain

E′′(P ) = ε2a−2 1
λ

(
− 2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3µ(F ′)2/λ + λFa
′′

+ 2F ′Fa
′

+Oσ(εa−1 + ε1/2 + ε3/2−a + εa1−a)
)

, (3.39)

Finally we note that, after the previous change of variables9 p = p(P, Q, ε),
q = q(P, Q, ε) the Hamiltonian Ỹ is transformed into

Ŷ (P, Q, τ, ε) :=
√

ε

wy∗
1

(E(P ) + Oσ(ε3a−3)) . (3.40)

From Theorem 7, the condition Φ̂ �≡ 0, which gives a twist term ∂2
PP Ŷ of

order εa−1/2, is sufficient for the stability of the original system on the energy
level (3.10). In fact the evolution of the variable P (and, hence, of E) remains
bounded so that the evolution of p (and, hence of ỹ2) remains bounded by
O(ε−σ) from (3.27); finally the evolution of y2 is bounded by Oσ(εa−1) from
(3.9). The case in which, for some ycr

1 , F (y2) := H01(ycr
1 , y2) is of the type

described in (1.11) is more delicate, since the twist term is smaller. This case
will be discussed in the next Section.

2B. If |y∗
1 | < εσ, we change y0

2 by a quantity of order ∼ εσ1 , σ1 < σ/4.
Then H01(0, y0

2) will change at least by ∼ ε. The new y∗
1 , satisfying the energy

condition (3.10), will differ from the original one at least by ∼ ε4σ1 > 2εσ.
Hence, arguing as in case 1B, we reduced case 2B to 2A.

3.3 Proof of Theorem 2

From (1.12), namely Φ̂ = 0 ⇔ (F ′)2 = −2(h − F )F ′′, we have

µF ′′ +
3µ

2(h − F )
(F ′)2 = −2µF ′′ , (3.41)

while from (3.12), (3.41) and the definition of µ we have

−2Ha(0, y0
2 , x0)F ′′ +µF ′′ +3µ(F ′)2/λ+λFa

′′
+2F ′Fa

′
= Ψ̂+Oσ(εa−1 + ε1/2) ,

(3.42)

8In fact, if G := F − h the equation becomes 2GG′′ = (G′)2 ⇔ 2G′′/G′ = G′/G ⇔
2 ln G′ = ln G + c1 ⇔ G′(G)−1/2 = c2 ⇔

√
G = c2y + c3 ⇔ G = d(y − r)2.

9This change is O(1) in the sense that ∂P p, ∂P q, ∂Qp, ∂Qq are quantities of order 0 in ε.
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where
Ψ̂ := 2

(
− F ′′F a + F ′F

′
a + (h − F )F

′′
a

)
.

Finally from (3.39) and (3.42) we obtain

E′′(P ) = ε2a−2 1
λ

(
Ψ̂ + Oσ(εa−1 + ε1/2 + ε3/2−a + εa1−a)

)
. (3.43)

If (1.12) holds, non-degeneracy of the system with Hamiltonian Ŷ appears
in the order ε2a−3/2 provided a < 3/2 and Ψ̂ �≡ 0. It remains to note that (1.14)
is a general solution of the equation Ψ̂ = 0 for F satisfying (1.12). In fact the
equation becomes

−2dF a(y2) + 2d(y2 − r)F
′
a(y2) − d(y2 − r)2F

′′
a(y2) = 0 ,

that, after the substitution F a(y2) =: α(y2)(y2 − r), is equivalent to α′′(y2) = 0
which has general solution α(y2) = uy2 + v.

4 An application to Celestial Mechanics (aprés
D’Alembert)

In this section we consider the Hamiltonian version of the D’Alembert model
for the planetary spin/orbit problem. The model may be described as follows
(see [14],[10], [12], [13] for more details).

Let a planet be modelled by a rotational ellipsoid slightly flattened along the
symmetry axis (called “north–south” direction); assume that the center of mass
of such planet revolves on a slightly eccentric Keplerian ellipse around a fixed star
occupying one of the foci of the ellipse: the planet is subject to the gravitational
attraction of the star and the problem is to study the relative position of the
planet and, most notably, the time evolution of its angular momentum.

Such model may be described using Hamiltonian formalism using action–
angle symplectic variables. The Hamiltonian system describing the D’Alembert
model results to be a two–degrees–of–freedom system depending explicitly and
periodically on time (the period being the year of the planet); furthermore
such Hamiltonian system is nearly–integrable (with two small parameters: the
flatness of the planet and the eccentricity of the Keplerian ellipse) and properly
degenerate.

As we said in the introduction, we are interested in studying the D’Alembert
model in the vicinity of a p : q spin/orbit resonance (p and q positive, co–prime
integers). For simplicity we will omit in the following formulas the explicit
dependence on p and q.

Thanks to a well known result by Andoyer and Deprit (see, e.g., [1], [16]),
the motions of the D’Alembert model are governed, in suitable physical units,
by the following Hamiltonian function10

Hε,µ(I, ϕ) :=
(J̄1 + I1)2

2
+ ω̄(I3 − I2) (4.1)

+εf0(I1, I2, ϕ1, ϕ2) + εµf1(I1, I2, ϕ1, ϕ2, ϕ3;µ) ,

where:

a) J̄1 is a constant parameter, which may be interpreted as a “reference da-
tum” in a neighborhood of which the system will be studied;

b) ε and µ are two small non–negative parameters measuring, respectively, the
flatness of the planet and the eccentricity of the Keplerian orbit described
by the center of mass of the planet; moreover we define a constant c > 0
such that

µ = εc , (4.2)

10See [14].
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c) (I, ϕ) := (I1, I2, I3, ϕ1, ϕ2, ϕ3) ∈ A×T3 are standard symplectic coordina-
tes; the domain A ⊂ R3 is given by

A :=
{
|I1| < d , |I2 − J̄2| < d , I3 ∈ R

}
, (4.3)

where d is a suitable fixed (and small) positive number while J̄2 is fixed
“reference datum” (verifying, together with J̄1, certain assumptions spelled
out below);

d) 2π/ω̄ is the period of the Keplerian motion (“year of the planet”);

e) the function f0 is a trigonometric polynomial given by

f0 =
∑
j∈Z
|j|≤2

cj cos(jϕ1) + dj cos(jϕ1 + 2ϕ2) , (4.4)

where cj and dj are functions of (J̄1 + I1, I2) listed in the following item;

f) let

κ1 := κ1(I1) :=
L

J̄1 + I1
, κ2 := κ2(I1, I2) :=

I2

J̄1 + I1
,

ν1 := ν1(I1) :=
√

1 − κ2
1 , ν2 := ν2(I1, I2) :=

√
1 − κ2

2 ; (4.5)

where L is a real parameter; the parameters J̄i, L and the constant d are
assumed to satisfy

L + d < J̄1 , |J̄2| + 2d < J̄1 ; (4.6)

in this way 0 < κi < 1 (and the νi’s are well defined on the domain A).
Then, the functions cj and dj are defined by

c0(I1, I2) :=
1
4

(
2κ2

1ν
2
2 + ν2

1(1 + κ2
2)

)
,

d0(I1, I2) := −ν2
2

4
(2κ2

1 − ν2
1) ,

c±1(I1, I2) :=
κ1κ2ν1ν2

2
,

d±1(I1, I2) := ∓ (1 ± κ2)κ1ν1ν2

2
,

c±2(I1, I2) := −ν2
1ν2

2

8
,

d±2(I1, I2) := −ν2
1(1 ± κ2)2

8
. (4.7)

g) the function f1 is a convergent series in µ of trigonometric polynomials
(with increasing degrees); f0

1 := f1|µ=0 and f1
1 := df1/dµ|µ=0 are given by

f0
1 =

∑
j∈Z
|j|≤2

(−3)cj cos(jϕ1 + ϕ3) (4.8)

+dj

(
1
2

cos(jϕ1 + 2ϕ2 + ϕ3) −
7
2

cos(jϕ1 + 2ϕ2 − ϕ3)
)

,

f1
1 =

∑
j∈Z
|j|≤2

cj

(
3
2

cos(jϕ1) +
9
2

cos(jϕ1 + 2ϕ3)
)

(4.9)

+dj

(
17
2

cos(jϕ1 + 2ϕ2 − 2ϕ3) −
5
2

cos(jϕ1 + 2ϕ2)
)

.
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Remark 4.1 (i) Since I3 appears only linearly with coefficient ω̄, the angle ϕ3

corresponds to time t and Hε,µ is actually a two–degrees–of–freedom Hamilto-
nian depending explicitly on time in a periodic way (with period 2π/ω̄).

(ii) For a physical interpretation of the action variables I1, I2, the parameter
L and the angles ϕi, see [14], [12], [13].

We are interested in studying the above system in a neighborhood of a
day/year (or “spin/orbit”) resonance. Since the daily rotation is measured
by the angle ϕ1 and since in the unperturbed situation (ε = 0 and I1 = 0)
ϕ1 = ϕ0

1 + J̄1t, we see that an approximate day/year resonance corresponds
to take the “reference datum” J̄1 (which, in our units, coincides with the daily
frequency) in a rational relation with the year frequency ω̄, i.e., J̄1 = p

q ω̄ with
p and q co–prime positive integers; we shall speak in such a case of a “p : q
spin/orbit–resonance”.

Setting

J̄1 :=
p

q
ω̄ , ω :=

ω̄

q
, (4.10)

we see that the dynamics near a p : q spin/orbit resonance is described by the
Hamiltonian

Hε,µ(I, ϕ) :=
I2
1

2
+ ω(pI1 − qI2 + qI3) (4.11)

+εf0(I1, I2, ϕ1, ϕ2) + εµf1(I1, I2, ϕ1, ϕ2, ϕ3;µ) ,

(where we have omitted the constant term J̄2
1/2).

Finally, to make the analysis perturbative, we shall take as action–variable
domain an ε–dependent subset of A:

h) the domain of definition A introduced in item c) above will, from here on,
be replaced by its subset

Aε :=
{
|I1| < rε , |I2 − J̄2| < r , I3 ∈ R

}
, (4.12)

where
0 < � <

1
2

(4.13)

and r > 0. The parameters J̄i, L and the constant r are assumed to satisfy

L + 3rε < J̄1 , |J̄2| + 3r(ε + 1) < J̄1 , (4.14)

so that 0 < κi < 1 and the νi’s are well defined on the domain A.

Let φ∗ be the following linear symplectic map:

φ∗(I∗, ϕ∗) :=
(
(I∗1 , I∗2 ,−p

q
I∗1 + I∗2 +

1
q
I∗3 ), (ϕ∗

1 + pϕ∗
3, ϕ

∗
2 − qϕ∗

3, qϕ
∗
3)

)
. (4.15)

Then, φ∗ casts the Hamiltonian Hε,µ into the form11

H∗(I∗, ϕ∗; ε, µ) := Hε,µ ◦ φ∗(I∗, ϕ∗) (4.16)

=
(I∗1 )2

2
+ ωI∗3 + εf∗

0 + εµf∗
1 + εµ2f∗

2 + O(εµ3)

=
(I∗1 )2

2
+ ωI∗3 + εf∗

0 + ε1+cf∗
1 ε1+2cf∗

2 + O(ε1+3c)

where c is defined in (4.2) and

f∗
0 = f∗

0 (I∗1 , I∗2 , ϕ∗
1, ϕ

∗
2, ϕ

∗
3) := f0 ◦ φ∗ ,

f∗
1 = f∗

1 (I∗1 , I∗2 , ϕ∗
1, ϕ

∗
2, ϕ

∗
3) := f0

1 ◦ φ∗ ,

f∗
2 = f∗

2 (I∗1 , I∗2 , ϕ∗
1, ϕ

∗
2, ϕ

∗
3) := f1

1 ◦ φ∗ ,

11In the last equality we have also used the fact that µ = εc from (4.2).
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namely

f∗
0 =

∑
j∈Z
|j|≤2

cj cos(jϕ∗
1 + jpϕ∗

3) (4.17)

+dj cos
(
jϕ∗

1 + 2ϕ∗
2 + (jp − 2q)ϕ∗

3

)
,

f∗
1 =

∑
j∈Z
|j|≤2

(−3)cj cos
(
jϕ∗

1 + (jp + q)ϕ∗
3

)
(4.18)

+
dj

2

[
cos

(
jϕ∗

1 + 2ϕ∗
2 + (jp − q)ϕ∗

3

)
−7 cos

(
jϕ∗

1 + 2ϕ∗
2 + (jp − 3q)ϕ∗

3

)]
,

f∗
2 =

∑
j∈Z
|j|≤2

cj

2

[
3 cos(jϕ∗

1 + jpϕ∗
3) + 9 cos

(
jϕ∗

1 + (jp + 2q)ϕ∗
3

)]
(4.19)

+
dj

2

[
17 cos

(
jϕ∗

1 + 2ϕ∗
2 + (jp − 4q)ϕ∗

3

)
−5 cos

(
jϕ∗

1 + 2ϕ∗
2 + (jp − 2q)ϕ∗

3

)]
.

Now, since ϕ∗
3 is a “fast angle”, by standard Normal Form Theory (see,

for example, [10], [12], [13]) we can find a final close-to-the-identity canonical
change of variables φ�(y, x) = (I∗, ϕ∗) removing the dependence on the fast
angle up to exponentially small terms

H�(y, x; ε) := H∗ ◦ φ�(y, x)

=
y2
1

2
+ ωy3 + εf̄∗

0 (y1, y2, x1, x2) + ε1+cf̄∗
1 (y1, y2, x1, x2)

+ε1+2cf̄∗
2 (y1, y2, x1, x2) + εa′

g(y1, y2, x1, x2; ε) (4.20)
+O

(
ε exp(−const.ε−)

)
, (4.21)

where g is a suitable analytic function, the “bar” denotes the average on the
third angle and

a′ := min{2 − �, 1 + 3c} . (4.22)

Proposition 4.1 The motion of the planet in the D’Alembert model is gov-
erned, up to an ε-exponentially small term, by the two degrees of freedom prop-
erly degenerate “effective Hamiltonian”

Heff(y1, y2, x1, x2; ε) := (4.23)
y2
1

2
+ εf̄∗

0 (y, x) + ε1+cf̄∗
1 (y, x) + ε1+2cf̄∗

2 (y, x) + εa′
g(y, x; ε) .

Hence, up to an ε-exponentially long time, the motion of the planet is well-
described by the properly degenerate two degrees of freedom system (4.23). In
fact the effective Hamiltonian Heff is of the type (1.1) with

H0 =
y2
1

2
and H1 = f̄∗

0 + εcf̄∗
1 + ε2cf̄∗

2 + εa′−1g . (4.24)

If we want that H1 has the same special structure as in (1.7), we have to exclude
some particular spin/orbit resonances. In fact, from (4.17), it is simple to see
that, if (p, q) = (1, 1), (2, 1) the function f̄∗

0 really depends on the first angle
(but not on the second one), so that the perturbation H1 take the same form
as in (1.5)

H1 = H01(y, x1) + O(εc) , where H01 := f̄∗
0 . (4.25)

On the other hand,

(p, q) �= (1, 1), (2, 1) =⇒ f̄∗
0 = c0(y1, y2) , (4.26)

18



and, hence, we have, for (p, q) �= (1, 1), (2, 1)

H1 = H01(y) + O(εc) , with H01 = c0(y1, y2) , (4.27)

which is of the type described in (1.7). At this point we would apply the
stability Theorem 1 to the Hamiltonian Heff . Condition (1) is satisfied (recall
(4.24)). On the other hand, by the definition of c0 = H01 given in (4.7), it
follows that condition (2) means that, for any |y0

1 | < rε, the function

y2 �→ (J̄1 + y0
1)2 − 3L2

2(J̄1 + y0
1)4

is not identically zero. Such condition is satisfied if

J̄1 �=
√

3L

(taking ε small enough). Unfortunately we note that condition (1.11) could
be violated. Indeed, for y1 = ycr

1 = 0 (which is the only critical point of the
unperturbed Hamiltonian y2

1/2), we have

H01(ycr
1 , y2) = d(y2 − r)2 + h (4.28)

with

r := 0 d :=
1

4J̄2
1

(
1 − 3

L2

J̄2
1

)
, h :=

1
4

(
1 +

L2

J̄2
1

)
, (4.29)

where L and J̄1 are defined in (4.6). Moreover, for12 J̄1 <
√

3L, we have
d ≤ 0, so that the inequality in (1.11) is also satisfied. Summarizing in order to
prove the stability of Heff we can directly apply Theorem 1 only if J̄1 >

√
3L;

otherwise we have to use Theorem 2. Hence we suppose J̄1 <
√

3L and try to
apply Theorem 2.
In order to do it, we could think to set a := 1 + c, a1 := 1 + 2c and Ha := f̄∗

1

to have in (4.23) the same structure as in (1.10). However if we evaluate f̄∗
1 we

obtain (remembering that (p, q) �= (1, 1), (2, 1))

f̄∗
1 :=



−3c−2(y) cos(2x1) + 1
2d2(y) cos(2x1 + 2x2) if (p, q) = (1, 2) ,

− 7
2d1(y) cos(x1 + 2x2) if (p, q) = (3, 1) ,

− 7
2d2(y) cos(2x1 + 2x2) if (p, q) = (3, 2) ,

0 otherwise .

Hence, when we evaluate F a(y2) defined in (1.13) for Ha := f̄∗
1 , we obtain

F a(y2) = 0!
So, in order to use Theorem 2, we must require that f̄∗

1 = 0 and the degen-
eracy is removed by the term f̄∗

2 . Hence we take (p, q) �= (1, 2), (3, 1), (3, 2) so
that

Heff =
y2
1

2
+ εc0(y) + ε1+2cf̄∗

2 (y, x) + O(εa′
) , (4.30)

which has the form described in (1.10) with

H0 :=
y2
1

2
, H01 := c0(y) , Ha := f̄∗

2 (y, x) , a := 1+2c , a1 := a′ . (4.31)

Moreover, in order to have a < 3/2 (which is a hypothesis of Theorem 2), we
assume

c <
1
4

. (4.32)

12This is the physical interesting case corresponding to the model in which the equatorial
plane of the planet is not too different from its ecliptic plane of revolution around the star.
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We have

f̄∗
2 :=


3
2c0(y1, y2) + 17

2 d−1(y1, y2) cos(2x2 − x1) if (p, q) = (4, 1) ,

3
2c0(y1, y2) otherwise .

Evaluating F a(y2) defined in (1.13) for Ha := f̄∗
1 defined in (4.31) and for ycr

1

= 0, we obtain

F a(y2) =
3
2
c0(0, y2) =

3
2
dy2

2 +
3
2
h (4.33)

where d and h are defined in (4.29). Hence , in order to apply Theorem 2, we
have to verify condition (1.14), namely that r = 0 defined in (4.29) is not a root
of F a(y2). This is true since, from (4.33), we have only to check that h �= 0,
which follows from the definition of h given in (4.29). Summarizing, even in
the case J̄1 <

√
3L, we can prove stability by Theorem 2, if we exclude the

spin/orbit resonances (p, q) = (1, 2), (3, 1), (3, 2) and we assume (4.32).

Theorem 8 Suppose that J̄1 �=
√

3L, (p, q) �= (1, 1), (2, 1). Then the effective
Hamiltonian of the D’Alembert model defined in (4.23) is stable if the following
condition is satisfied

J̄1 >
√

3L or (p, q) �= (1, 2), (3, 1), (3, 2) , c < 1/4 . (4.34)

As a corollary of the previous Theorem and of formula (4.21), we can state the
following “Nekhoroshev-type” result:

Theorem 9 Suppose that J̄1 �=
√

3L, (p, q) �= (1, 1), (2, 1) and that the following
condition is satisfied

J̄1 >
√

3L or (p, q) �= (1, 2), (3, 1), (3, 2) , c < 1/4 . (4.35)

Then the action variables of the D’Alambert planetary Hamiltonian Hε,µ defined
in (4.1) are stable for an exponentially long time, namely there exist constants
c1, c2, c3 > 0 such that

|I(t) − I(0)| ≤ εc1 , ∀ |t| ≤ exp(c2ε
−) , (4.36)

where
(
I(t), ϕ(t)

)
denotes the Hε,µ-evolution of an initial datum

(
I(0), ϕ(0)

)
∈

A × T3.

Remark 4.2 We note that the previous result was already proved in [13] with-
out any assumption13 on the spin/orbit resonances or whatever. However, in
that generality, the so-called “Nekhoroshev-exponent” in the formula correspond-
ing to (4.36) was lightly worst: a suitable γ0 < min {�, c} instead of the present
�.

5 Appendix

Proof of Lemma 3.2.
For ỹ1, satisfying (3.14), equation (3.11) can be rewritten as follows:

� := H00(y0
1 + εa−1ỹ1) − H00(y0

1)
= −ε

(
H01(y0

1 , y0
2 + εa−1ỹ2) − H01(y0

1 , y0
2)

)
−ε

(
H01(y0

1 + εa−1ỹ1, y
0
2 + εa−1ỹ2) − H01(y0

1 , y0
2 + εa−1ỹ2)

)
−εa

(
Ha(0, y0

2 + εa−1ỹ2, x) − Ha(0, y0
2 , x0)

)
−εa

(
Ha(y0

1 + εa−1ỹ1, y
0
2 + εa−1ỹ2, x) − Ha(0, y0

2 + εa−1ỹ2, x)
)

−εa
(
Ha(0, y0

2 , x0) − Ha(y0
1 , y0

2 , x0)
)

+εa1H2(y0, x0, εa−1ỹ, x, ε)

13A part from J̄1 �=
√

3L.
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= −ε
(
H01(y0

1 , y0
2 + εa−1ỹ2) − H01(y0

1 , y0
2)

)
−εa

(
Ha(0, y0

2 + εa−1ỹ2, x) − Ha(0, y0
2 , x0)

)
−ε

(
H01(y0

1 + εa−1ỹ1, y
0
2 + εa−1ỹ2) − H01(y0

1 , y0
2 + εa−1ỹ2)

)
+εbH3(y0, x0, ỹ1, ε

a−1ỹ2, x, ε) (5.1)

for some analytic functions H2, H3 and

b := min{2a − 1, a + 1/2, a1} .

We have, for
|εa−1ỹ1| small enough , (5.2)

that

� = H00(y0
1 + εa−1ỹ1) − H00(y0

1)

= εa−1/2w∗y
∗
1 ỹ1 +

w0

2
ε2a−2ỹ2

1 + Oσ(ε3a−3ỹ3
1), (5.3)

w∗ =
1
y0
1

∂H00

∂y1
(y0

1) = w + Oσ(
√

ε),

w0 =
∂2H00

∂y2
1

(y0
1) = w + Oσ(

√
ε).

Now we write Y in the form (3.14), and we want to determinate Φj for
j = 0, 1, 2, 3 expanding (5.1) in powers of ỹ2. First we write

ỹ1 =: −
√

ε

wy∗
1

ŷ1 ,

with
ŷ1 := Φ0 + Φ1ỹ2 + εa−1Φ2ỹ

2
2 + ε2a−2Φ3ỹ

3
2 + Oσ(ε3a−3ỹ4

2) .

Hence, from (5.3), we have

� = −εa w∗
w

ŷ1 + ε2a−1 w0

2w2(y∗
1)2

ŷ2
1 + Oσ(ε3a−3/2ŷ3

1) . (5.4)

Now we expand the two expressions for � given in (5.1) and (5.4) in power of
ỹ2. At zero degree we have:

−εaw∗
w

Φ0 + Oσ(ε2a−1) = −εa(Ha(0, y0
2 , x) − Ha(0, y0

2 , x0)) + Oσ(εa+1/2 + εb).

This implies (3.15).
At first degree of ỹ2 we get:

−εaw∗
w

Φ1 +
ε2a−1w0

w2(y∗
1)2

Φ0Φ1 + O(ε3a−3/2−3σ)

= −εaH ′
01(y

0
1 , y0

2) − ε2a−1H ′
a(0, y0

2 , x) + O(εa+1/2−σ + εb+a−1)
= −εaF ′(y0

2) − ε2a−1H ′
a(0, y0

2 , x) + O(εa+1/2−σ + εb+a−1) ,

using that H ′
01(y

0
1 , y0

2) = F ′(y0
2) + O(

√
ε), from which we have(w∗

w
− εa−1 w0

wλ
Φ0

)
Φ1

= F ′(y0
2) + εa−1H ′

a(0, y0
2 , x) + Oσ(ε2a−3/2 + ε1/2 + εb−1) .

From |λ| ≥ ε2σ we have

(w∗
w

− εa−1 w0

wλ
Φ0

)−1

=
(

1 − εa−1 Φ0

λ
+ Oσ(

√
ε)

)−1

= 1 + εa−1 Φ0

λ
+ Oσ(

√
ε + ε2a−2) ,
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from which we finally obtain

Φ1 = F ′(y0
2) + εa−1H ′

a(0, y0
2 , x) +

εa−1

λ
Φ0F

′(y0
2) + Oσ(ε2a−2 + ε1/2 + εb−1).

By definition of µ and ϕ0 we obtain

Φ0 = µ + ϕ0(y0
2 , x) + Oσ(ε1/2 + εa−1 + εa1−1) (5.5)

which implies (3.16).
At second degree of ỹ2 we get:

−ε2a−1w∗
w

Φ2 +
ε2a−1w0

2w2(y∗
1)2

(Φ2
1 + 2εa−1Φ0Φ2) + Oσ(ε3a−3/2)

= −1
2
ε2a−1H ′′

01(y
0
1 , y0

2) − 1
2
ε3a−2H ′′

a (0, y0
2 , x) + Oσ(ε2a−1/2 + εb+2a−2)

= −1
2
ε2a−1F ′′(y0

2) − 1
2
ε3a−2H ′′

a (0, y0
2 , x) + Oσ(ε2a−1/2 + εb+2a−2) ,

from which we have
w∗
w

Φ2 =
w0

2wλ
Φ2

1 + εa−1 w0

wλ
Φ0Φ2 +

1
2
F ′′(y0

2) + εa−1 1
2
H ′′

a (0, y0
2 , x)

+Oσ(εa−1/2 + ε1/2 + εb−1)

and (
1 − εa−1 1

λ
Φ0

)
Φ2 =

1
2λ

Φ2
1 +

1
2
F ′′(y0

2) + εa−1 1
2
H ′′

a (0, y0
2 , x)

+Oσ(εa−1/2 + ε1/2 + εb−1) .

Since (
1 − εa−1 1

λ
Φ0

)−1

= 1 + εa−1 1
λ

Φ0 + Oσ(ε2a−2) ,

we have

Φ2 =
1
2
F ′′(y0

2) +
1
2
εa−1H ′′

a (0, y0
2 , x) +

1
2λ

Φ2
1 +

εa−1Φ0

2λ

(
F ′′(y0

2) +
1
λ

Φ2
1

)
+Oσ(ε2a−2 + εa−1/2 + ε1/2 + εb−1)

=
1
2
F ′′(y0

2) +
1
2
εa−1H ′′

a (0, y0
2 , x) +

1
2λ

(F ′(y0
2))2

+
εa−1Φ0

2λ

(
F ′′(y0

2) +
3
λ

(F ′(y0
2))2

)
+ εa−1 1

λ
F ′(y0

2)H ′
a(0, y0

2 , x)

+Oσ(ε2a−2 + εa−1/2 + ε1/2 + εb−1)

and (3.17) follows from (5.5).
Finally at third degree of ỹ2 we have that

ε3a−2
(
−w∗

w
Φ3 +

w0

wλ
Φ1Φ2

)
+ Oσ(ε4a−3 + ε3a−3/2)

= ε3a−2

(
−Φ3 +

1
λ

Φ1Φ2

)
+ Oσ(ε4a−3 + ε3a−3/2)

is also equal to

−ε3a−2 1
6
H ′′′

01(y
0
1 , y0

2) + Oσ(ε4a−3) = −ε3a−2 1
6
F ′′′(y0

2) + Oσ(ε4a−3 + ε3a−3/2) ,

so that

Φ3 =
1
6
F ′′′ +

1
λ

Φ1Φ2 + Oσ(εa−1 + ε1/2)

=
1
6
F ′′′ +

1
λ

F ′Φ2 + Oσ(εa−1 + ε1/2)

=
1
6
F ′′′ +

1
2λ2

F ′Φ̂ + Oσ(εa−1 + ε1/2) ,

where, in the last equation we have used the fact that Φ2 = Φ̂/(2λ) +Oσ(εa−1

+ε1/2).
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the fast rotating rigid body: a numerical study. In print in Discete and
Continuous Dynamical Systems B.
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[7] G. Benettin, F. Fassò, M. Guzzo: Fast rotations of the symmetric rigid
body: a study by Hamiltonian perturbation theory. Part II, Gyroscopic
rotations. Nonlinearity 10, 1695–1717 (1997).
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Henri Poincaré, Phys. Théor., 60, 1–144 (1994). Erratum, Ann. Inst. Henri
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[22] H. Poincaré: Les Methodes Nouvelles de la Mechanique Celeste, Gauthier
Villars, Paris (1892)

24


