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Abstract—Quantum observables are represented as series in noncommuting generators x̂ and p̂.
The space of such series turns out to be an infinite-dimensional associative algebra and a Lie
algebra. The concept of convergence is presented for such series. In this language, quantum
objects turn out to be noncommutative analogues of classical objects. Quantum analogues are
proved for several basic theorems of classical mechanics.

1. INTRODUCTION AND MOTIVATION

We start with some motivations. First, we present basic constructions of classical mechanics in
terms of quantum mechanics (see, e.g., [5]).

Suppose, for simplicity, that the phase space of a classical mechanical system is R
2n =

{(x, p) : x ∈ R
n, p ∈ R

n}.
The space of C∞-smooth functions on R

2n is an infinite-dimensional Lie algebra with respect
to the Poisson bracket {· , ·},

{f, g} =
n∑

j=1

(
∂f

∂pj

∂g

∂xj
− ∂f

∂xj

∂g

∂pj

)
. (1.1)

This algebra is called the space of classical observables.
To specify a system, one should choose an observable h (a Hamiltonian function). Then, on the

space of classical observables, dynamics is defined by the partial differential equation

ḟ = {h, f} for any classical observable f. (1.2)

In classical mechanics, one usually considers dynamics in the phase space:

ẋ =
∂h

∂p
, ṗ = −∂h

∂x
. (1.3)

Equation (1.2) is, in a sense, secondary with respect to the usual Hamiltonian equations (1.3).
Indeed, let φt be the phase flow of system (1.3). Then the solution of (1.2) with the initial condition
f
∣∣
t=0

= f0 has the form f = f0 ◦ φt.
Quantum dynamics can be introduced similarly. Let

L2 = L2(Rn), R
n = {x = (x1, . . . , xn)},

denote the Hilbert space of square integrable functions on R
n. The corresponding Hermitian product

is given by

〈ϕ,ψ〉 =
∫

Rn

ϕ(x)ψ(x) dx.
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212 D.V. TRESCHEV

Quantum observables are Hermitian operators on L2. For any two observables f̂ and ĝ, their
commutator is [

f̂ , ĝ
]

= − 1
i�

(
f̂ ◦ ĝ − ĝ ◦ f̂

)
, (1.4)

where i =
√
−1 and � is the Planck constant.

Specifying a quantum observable ĥ, we define the dynamics by the Heisenberg equation:

˙̂
f =

[
ĥ, f̂

]
for any quantum observable f̂ . (1.5)

According to the standard quantization procedure, with the classical variables xj and pj, j =
1, . . . , n, we associate their quantum analogues x̂j and p̂j = −i�∂/∂xj ; here x̂j is the operator
of multiplication by xj . Following this rule, one can define quantum analogues of many classical
dynamical quantities (such as momentum, angular momentum, potential energy, etc.). However,
difficulties arise when a classical observable contains a product of two functions whose quantum
analogues do not commute. In this case, the quantization is not uniquely defined. For example,
with xjpj , one may associate either x̂j ◦ p̂j, or p̂j ◦ x̂j , or 1

2(x̂j ◦ p̂j + p̂j ◦ x̂j), . . . .
In this paper, we replace the standard language of quantum mechanics by a new one. This new

language is more algebraic and has several advantages:

• classical mechanics becomes a natural projection of quantum mechanics,
• we do not use expansions in � and deal with convergent series,
• we obtain some spaces (associative and Lie algebras) of quantum observables that are closed

with respect to the operations of composition ◦ and commutator [ · , · ].
We do not claim that our approach is definitely better than the traditional one. The main

difficulty is the interpretation of algebraic objects that we use as quantum observables in terms of
operators on L2(Rn).

2. ASSOCIATIVE ALGEBRA QOform

We call the product

z = zk ◦ . . . ◦ z1, zj ∈ {x̂1, . . . , x̂n, p̂1, . . . , p̂n}, j = 1, . . . , k,

a monomial and deg z := k its degree. Below, due to the motivations from quantum mechanics, we
refer to such monomials and their linear combinations as observables.

The observable
Fk =

∑
deg z=k

fzz, (2.1)

where fz are complex constants, is called a homogeneous form of degree k: deg Fk = k. We assume
that the forms of degree zero are constants. The space of homogeneous forms of degree k is denoted
by Fk.

Below we consider observables that admit a formal expansion

F =
∞∑

k=0

Fk(x̂, p̂ ), Fk ∈ Fk. (2.2)

Let Q̃Oform(0) (or simply Q̃Oform) denote the vector space of such observables. In Q̃Oform, differ-
ent formal series (2.2) are regarded as distinct elements. The space Q̃Oform is a free associative
(noncommutative) algebra over C with respect to the composition ◦.
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QUANTUM OBSERVABLES: AN ALGEBRAIC ASPECT 213

For F ∈ Q̃Oform, we say that F = Om(x̂, p̂ ) if F0 = . . . = Fm−1 = 0 in its expansion (2.2).
Setting rj := p̂j ◦ x̂j − x̂j ◦ p̂j, we consider the ideal J ⊂ Q̃Oform generated by

p̂j ◦ p̂k − p̂k ◦ p̂j, 1 ≤ j, k ≤ n, (2.3)

x̂j ◦ x̂k − x̂k ◦ x̂j, 1 ≤ j, k ≤ n, (2.4)

p̂j ◦ x̂k − x̂k ◦ p̂j, j �= k, (2.5)

rj − rk, 1 ≤ j, k ≤ n, (2.6)

rj ◦ p̂j − p̂j ◦ rj , 1 ≤ j ≤ n, (2.7)

rj ◦ x̂j − x̂j ◦ rj, 1 ≤ j ≤ n. (2.8)

Let QOform(0) (below, usually QOform) be the quotient space Q̃Oform/J . We call QOform the
algebra of formal quantum observables over 0 ∈ C

2n.
Note that the ideal J is generated only by certain homogeneous elements of Q̃Oform.
We denote the corresponding projection by

π : Q̃Oform → QOform.

Since π(r1) = . . . = π(rn), we denote r := π(rj) ∈ QOform. Traditionally, r is replaced by −i�.
However, we will not do this. The main reason is that expansions in � in quantum mechanics are
usually divergent, while we would like to have a theory that deals with convergent series.

For any F ∈ QOform, we say that F = Om(x̂, p̂ ) if there exists F̃ ∈ Q̃Oform such that F̃ =
Om(x̂, p̂ ) and F = π(F̃ ).

For any F,G ∈ QOform such that F = Om(x̂, p̂ ) and G = Ol(x̂, p̂ ), we have

F ◦ G = Om+l(x̂, p̂ ), F + G = Ok(x̂, p̂ ), k = min{m, l}.

In particular, r = O2(x̂, p̂ ).

3. FORMAL CLASSICAL OBSERVABLES

We define the space COform of classical formal observables as the space of formal series

F (x, p) =
∑

µ,ν∈Z
2n
+

fµ,νx
µpν , xµ = xµ1

1 . . . xµn
n , pν = pν1

1 . . . pνn
n .

Here x and p are regarded as ordinary coordinates in R
2n. The space COform is a formal infinite-

dimensional associative (and commutative) algebra.
Let Ĵ ⊂ Q̃Oform be the ideal generated by J and r1, . . . , rn, and let J0 ⊂ QOform be the ideal

generated by r.
Since r commutes with any F ∈ QOform, we have

J0 = r ◦ QOform. (3.1)

The following proposition is obvious.
Proposition 3.1. COform ∼= Q̃Oform/Ĵ ∼= QOform/J0.

The projections Q̃Oform → COform and QOform → COform can be regarded as some kinds of
averaging. Below we use the following notations for these projections:

ãver : Q̃Oform → COform, aver : QOform → COform.
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214 D.V. TRESCHEV

Corollary 3.1. The maps ãver and aver are homomorphisms of associative algebras.
Corollary 3.2. The diagram

Q̃Oform π

ãver

QOform

aver

COform

is commutative.
Corollary 3.3. For any F̃ ∈ J and F ∈ J0, we have ãver F̃ = 0 and aver F = 0.
Equation (3.1) implies
Proposition 3.2. The observable F ∈ QOform lies in J0 if and only if

F = r ◦ F0, F0 ∈ QOform. (3.2)

We say that a monomial z ∈ Q̃Oform is of type (µ, ν) ∈ Z
2n
+ if it contains exactly µj multipliers x̂j

and νj multipliers p̂j , j = 1, . . . , n. Obviously,

deg z = |µ| + |ν| := µ1 + . . . + µn + ν1 + . . . + νn.

We say that

Fκ =
∑

type z=κ

fzz, κ = (µ, ν) ∈ Z
2n
+ ,

is a homogeneous form of type κ. Then

ãver Fκ =

( ∑
type z=κ=(µ,ν)

fz

)
xµpν.

Let Fκ ⊂ Q̃Oform denote the space of homogeneous forms of type κ. Note that for n > 1, the
spaces π(Fκ) and π(Fρ), κ �= ρ, may have a nonzero intersection.

Any observable F ∈ Q̃Oform can be expanded in homogeneous forms of type κ:

F =
∑

κ∈Z2n
+

Fκ, Fκ ∈ Fκ. (3.3)

Then
ãver F =

∑
κ∈Z

2n
+

ãver Fκ.

4. COMMUTATOR ON QOform

The space COform is a Lie algebra. The corresponding commutator {· , ·} is the Poisson
bracket (1.1). In this section, we introduce a structure of a formal Lie algebra on QOform.

Proposition 3.2 means that the following map is well-defined:

Ω: J0 → QOform, J0 � F �→ Ω(F ) = F0,

where F0 = F0(F ) is defined by (3.2). Informally speaking, Ω is the operator of division by r.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 250 2005



QUANTUM OBSERVABLES: AN ALGEBRAIC ASPECT 215

For any F,G ∈ QOform, we have F ◦ G − G ◦ F ∈ J0. Define

[F,G] = Ω(F ◦ G − G ◦ F ). (4.1)

The commutator (4.1) obviously satisfies the Jacobi identity (A.1) and the Leibnitz identity (A.4).
Note that (4.1) is compatible with (1.4). Here, instead of dividing F ◦G−G ◦F by −i�, we divide
it by r; these operations are different from the algebraic point of view but are the same from the
physical point of view.

For any two observables F and G, we define their symmetric (Jordan) product ([ · , · ]) as follows:

([F,G]) :=
1
2
(F ◦ G + G ◦ F ). (4.2)

Proposition 4.1. For any F,G ∈ QOform,

aver(F ◦ G) = aver([F,G]) = aver F · aver G, (4.3)

aver[F,G] = {aver F, aver G}. (4.4)

Corollary 4.1. The map

aver :
(
QOform, ◦ , [ · , · ]

)
→

(
COform, · , {· , ·}

)
is a homomorphism of associative algebras and Lie algebras.

Proof of Proposition 4.1. Equations (4.3) follow from Corollary 3.3. To prove (4.4), we note
that both the left- and the right-hand sides of (4.4) are bilinear in F and G. Hence, it is sufficient
to assume that F and G are monomials:

F = π(F̃ ), G = π(G̃), F̃ ∈ Fκ, G̃ ∈ Fν .

Now we use induction on |ν|. The cases |ν| = 0 and |ν| = 1 are simple. Then assume that (4.4)
is true for |ν| ≤ k. Let deg G̃ = k+1. We represent G̃ as a product G̃ = G′ ◦G′′, deg G′,deg G′′ ≤ k.
By the Leibnitz identity (A.4),

aver[F̃ , G̃] = aver[F̃ ,G′ ◦ G′′] = aver
(
[F̃ ,G′] ◦ G′′) + aver

(
G′ ◦ [F̃ ,G′′]

)
.

Using the induction hypothesis and (4.3), we get

aver[F̃ , G̃] = {aver F̃ , aver G′} · aver G′′ + aver G′ · {aver F̃ , aver G′′}

= {aver F̃ , aver G̃}. �

It is easy to check that the brackets [ · , · ] and ([ · , · ]) satisfy equations (A.2)–(A.4), (A.5),
and (A.6).

5. BASES IN π(Fκ)

5.1. xp-Basis. We obtain a basis in the vector space π(Fκ) by using an expansion in r.
For any k = (k1, . . . , kn) ∈ R

n, we say that 0 � k if 0 ≤ kj for any j = 1, . . . , n. We say that
k � α if 0 � α − k.

Proposition 5.1. Any F ∈ π(Fα,β) can be uniquely represented in the form

F =
∑

k∈Z
n
+, k�α, k�β

fk r|k| ◦ π
(
x̂α−k ◦ p̂ β−k

)
, |k| = k1 + . . . + kn. (5.1)
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216 D.V. TRESCHEV

Corollary 5.1.

dimπ(Fα,β) = m1 · . . . · mn, mj = min{αj , βj} + 1. (5.2)

Proof of Proposition 5.1. The existence of expansion (5.1) follows from the possibility of
pushing π(p̂j) to the right and π(x̂j) to the left in the monomials of F with the help of the equation

π(p̂j ◦ x̂j) − π(x̂j ◦ p̂j) = r.

The uniqueness of expansion (5.1) means that equation (5.1) with F = 0 holds if and only if all
the coefficients fk vanish. This fact can be easily proved by induction on |k|. �

The observables

r|k| ◦ x̂α−k ◦ p̂ β−k, k ∈ Z
n
+, k � α, k � β,

form an xp-basis in the vector space π(Fα,β). In the traditional language, an expansion in the
xp-basis is associated with the xp-symbol of an observable (see, for example, [2]).

5.2. Primitive basis. We call a monomial z, type z = κ ∈ Z
2n
+ , composite if π(z) can be

represented as a nontrivial convex combination

π(z) = ϑ′π(z′) + ϑ′′π(z′′) + . . . + ϑ(s)π
(
z(s)

)
,

type z′ = type z′′ = . . . = type z(s) = κ,

ϑ′, ϑ′′, . . . , ϑ(s) > 0, ϑ′ + ϑ′′ + . . . + ϑ(s) = 1, s > 1.

Other z are called primitive. We define

Fκ

prim =
{
π(z) : type z = κ, z is primitive

}
.

Proposition 5.2. Consider the case n = 1. For any (µ, ν) ∈ Z
2
+ such that µ ≤ ν, the primitive

monomials in π(Fκ) are

π(x̂µ ◦ p̂ ν), π(x̂µ−1 ◦ p̂ ν ◦ x̂), π(x̂µ−2 ◦ p̂ ν ◦ x̂2), . . . , π(p̂ ν ◦ x̂µ). (5.3)

In the case µ ≥ ν, the primitive monomials are as follows :

π(p̂ ν ◦ x̂µ), π(p̂ ν−1 ◦ x̂µ ◦ p̂ ), π(p̂ ν−2 ◦ x̂µ ◦ p̂ 2), . . . , π(x̂µ ◦ p̂ ν). (5.4)

We prove Proposition 5.2 in Appendix B.

Let Fµj ,νj

j , µj , νj ∈ Z+, be the space of homogeneous forms of type (µj , νj) with respect to x̂j

and p̂j, and let Fµj ,νj

j(prim) be the set of the corresponding primitive monomials.
Obviously, for n > 1, the set Fµ,ν

prim may contain only the products

z1 ◦ . . . ◦ zn, zj ∈ Fµj ,νj

j(prim), j = 1, . . . , n. (5.5)

Proposition 5.3. For any µ, ν ∈ Z
n
+, the set Fµ,ν

prim contains all products (5.5), and monomials
π(z) ∈ Fµ,ν

prim form a basis in the vector space π(Fµ,ν).
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5.3. Norm on π(Fm). For any G ∈ Fm, G =
∑

deg z=m gzz, we set

‖G‖ =
∑

deg z=m

|gz|.

For any F ∈ π(Fm), we set
‖F‖ = inf

G∈Fm, π(G)=F
‖G‖.

The definition of the primitive basis implies the following proposition.
Proposition 5.4. For any F ∈ Fm, we have ‖F‖ =

∑
|fz|, where fz are the coefficients in

the expansion of F in the primitive basis.
Note that according to Proposition A.3,

‖l! rl‖ = 2l.

This equation explains why l! rl naturally appears instead of rl in the expansions in powers of r
below. The reason is that rl are “too small” for large l. This fact is also responsible for the divergence
of expansions in powers of the Planck constant in the traditional language of quantum mechanics.

6. MAJORANTS

For any f =
∑

fµ,νx
µpν ∈ COform, we say that ϕ =

∑
ϕµ,νxµpν ∈ COform is a majorant for f

(f � ϕ) if
|fµ,ν | ≤ ϕµ,ν for all (µ, ν) ∈ Z

2n
+ .

Let {{· , ·}} be the “majorant bracket,”

{{f(x, p), g(x, p)}} =
n∑

j=1

(
∂f

∂pj

∂g

∂xj
+

∂f

∂xj

∂g

∂pj

)
.

The following proposition is obvious.
Proposition 6.1. Suppose that f � ϕ, g � ψ, and a, b ∈ C. Then

af + bg � |a|ϕ + |b|ψ, fg � ϕψ,

∂f

∂pj
� ∂ϕ

∂pj
,

∂f

∂xj
� ∂ϕ

∂xj
, j = 1, . . . , n,

{f, g} � {{ϕ,ψ}}.

Consider an observable f̃ =
∑

f̃zz ∈ Q̃Oform. We say that f =
∑

fµ,νx
µpν ∈ COform is the

absolute average of f̃ (f = Aver f̃) if

fµ,ν =
∑

type z=(µ,ν)

|f̃z| for any (µ, ν) ∈ Z
2n
+ .

We say that ϕ ∈ COform is a majorant for f̃ ∈ Q̃Oform (f̃ � ϕ) if Aver f̃ � ϕ.
If f ∈ QOform, the relation f � ϕ means by definition that ϕ is a majorant for some f̃ ∈ Q̃Oform,

π(f̃) = f .
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218 D.V. TRESCHEV

Proposition 6.2. Suppose that f, g ∈ QOform and ϕ,ψ ∈ COform are such that f � ϕ and
g � ψ. Then, for any a, b ∈ C,

af + bg � |a|ϕ + |b|ψ, f ◦ g � ϕψ, [f, g] � {{ϕ,ψ}}.

Proof. The first relation is obvious, and the other two follow from the fact that

Aver(f̃ ◦ g̃) � Aver f̃ · Aver g̃, Aver[f̃ , g̃ ] � {{Aver f̃ ,Aver g̃}}

for any f̃ , g̃ ∈ Q̃Oform. �
Let F,F0 ∈ F(µ,ν) be homogeneous forms of the type (µ, ν) ∈ Z

2n
+ .

Proposition 6.3. Suppose that π(F ) = π(F0) and the π-projection of any monomial of F0 is
a primitive monomial. Let a, a0 ∈ R be such that

Aver F = axµpν , Aver F0 = a0x
µpν .

Then 0 ≤ a0 ≤ a.

This proposition is analogous to Proposition 5.4 and means that the expansion in the primitive
basis provides an optimal majorant for F ∈ QOform.

7. ANALYTIC OBSERVABLES

We say that F =
∑

µ,ν fµ,νx
µpν ∈ COform lies in CO(c, a) if the coefficients fµ,ν are estimated

as follows. For some c, a > 0,

|fµ,ν | ≤ ca|µ|+|ν|.

We set CO =
⋃

c,a>0 CO(c, a). Hence, CO is the space of functions that are analytic at the origin
of C

2n. The structures of an associative algebra and a Lie algebra on CO are the same as those on
COform.

We say that F̃ ∈ Q̃Oform lies in the space Q̃O if

Aver F̃ ∈ CO.

We say that F ∈ QOform belongs to the space QO if there exists F̃ ∈ Q̃O such that π(F̃ ) = F .

Proposition 7.1. The space Q̃O is invariant with respect to the operation ◦. The space QO
is invariant with respect to the operations ◦ and [ · , · ].

Proof. For any F̃ , G̃ ∈ Q̃O, we have Aver F̃ ,Aver G̃ ∈ CO. Therefore, by Proposition 6.2,

Aver(F̃ ◦ G̃) � Aver F̃ · Aver G̃ ∈ CO.

For F,G ∈ QO, let F̃ , G̃ ∈ Q̃O be such that π(F̃ ) = F and π(G̃) = G. Then, by Proposition 6.2,

F ◦ G � Aver(F̃ ◦ G̃) ∈ CO, [F,G] � {{Aver F̃ ,Aver G̃}} ∈ CO. �

Obviously, ãver(Q̃O) = aver(QO) = CO. By (4.3) and (4.4), aver is a homomorphism of the
associative and Lie algebras QO and CO.
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8. ANALYTICITY AND THE xp-EXPANSION

In this section, we present the analyticity condition in terms of expansions in xp-bases.
Proposition 8.1. Suppose that F ∈ QOform has the form

F =
∑
α,β,γ

fα,β,γα! rα ◦ π
(
x̂β ◦ p̂ γ

)
, α ∈ Z+, β, γ ∈ Z

n
+, (8.1)

where the coefficients fα,β,γ satisfy the following exponential estimate:

|fα,β,γ| < Caα+|β|+|γ|, C, a > 0. (8.2)

Then F ∈ QO.
Proof. By Corollary A.2,

F �
∑
α,β,γ

Caα+|β|+|γ|(2x1p1)αxβpγ =
C

1 − 2ax1p1

n∏
j=1

1
(1 − axj)(1 − apj)

. �

Proposition 8.2. Any F ∈ QO admits expansion (8.1) in which the coefficients fα,β,γ are
estimated by (8.2).

Proof. Consider the case n = 1. For any monomial z, type z = (β, γ), β < γ,

z =
α∑

j=0

Kj j! rj ◦ x̂β−j ◦ p̂ γ−j, |Kj | ≤ Cj
βCj

γ ,

where Cv
u are binomial coefficients.

Since F is analytic, its homogeneous forms of type β, γ admit the estimate Fβ,γ � C(a′)β+γxβpγ ,
where we can assume that 2a′ > 1. Hence,

F �
∑

α,β′,γ′

C(a′)β
′+γ′

Cα
β′Cα

γ′α! rαxβ′−αpγ′−α =
∑
α,β,γ

C(a′)β+γ+2αCα
β+αCα

γ+αα! rαxβpγ

�
∑
α,β,γ

C(2a′)β+γ+2αα! rαxβpγ �
∑
α,β,γ

Caβ+γ+αα! rαxβpγ ,

where a = (2a′)2. In the case n > 1, the arguments are analogous. �

9. HERMITIAN OBSERVABLES

For any monomial z = zm ◦ . . . ◦ z1 ∈ Fm and f ∈ C, we set Ĩ(fz) = f z1 ◦ . . . ◦ zm, where f is
the complex conjugate of f . By linearity, Ĩ is continued to the involution

Ĩ : Q̃Oform → Q̃Oform, Ĩ ◦ Ĩ = id.

We say that an observable F ∈ Q̃Oform is Hermitian at zero if F = ĨF and skew-Hermitian at
zero if F = −ĨF .

Proposition 9.1. Ĩ(J) = J .
Proof. Indeed, this simple statement follows from the fact that all generators (2.3)–(2.8) of J

are either Hermitian or skew-Hermitian at zero. �
For any F̃ ∈ Q̃Oform and F = π(F̃ ), we set I(F ) = π(ĨF̃ ). Due to Proposition 9.1, the

observable I(F ) is well-defined.
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220 D.V. TRESCHEV

We obtain the involution I : QOform → QOform such that the diagram

Q̃Oform
Ĩ

π

Q̃Oform

π

QOform I QOform

is commutative.
Remark 9.1. Let conj : COform → COform be the complex conjugation. Then the diagrams

Q̃Oform Ĩ

ãver

Q̃Oform

ãver

COform
conj

COform

and
QOform I

aver

QOform

aver

COform
conj

COform

are obviously commutative.
We say that an observable F ∈ QOform is Hermitian at zero if F = IF .
Proposition 9.2. The following statements are equivalent :

(1) F ∈ QOform is Hermitian at zero.
(2) The expansion of F in the primitive basis, F =

∑
κ∈Z

2n
+

∑
z∈Fκ

prim
fzz, is symmetric: fIz = fz

for any z.

The space of observables that are Hermitian at zero forms a Lie subalgebra in QO. We denote
it by QOH. Below (Section 14), we show that if an observable is Hermitian at zero, it is Hermitian
everywhere in its domain of definition.

The product of two Hermitian observables is not Hermitian in general. However, for any F,G ∈
QOH, we have ([F,G]) ∈ QOH.

10. RIGHT INVERSE FOR aver

The map aver has no right inverse homomorphism

Op: COform → QOform, aver ◦Op = idCOform .

We do not prove this simple fact here but just mention one similar result, the Groenvald–Van Hove
theorem (see, for example, [1, 6]).

Theorem. There is no linear map Op: COform → QOform satisfying the following properties :
for any F,G ∈ COform,

(1) [Op F,Op G] = Op{F,G},
(2) Op xj = x̂j and Op pj = p̂j,

(3) Op F = I(OpF ).

In a more algebraic language, this theorem means that there is no homomorphism of Lie algebras
Op: CO → QOH satisfying conditions (2) and (3).

It is well known that such a homomorphism exists for the subalgebras formed by observables of
degree at most 2. Moreover, this homomorphism is unique. It is defined by the equations

Op(pjpk) = p̂j ◦ p̂k, Op(xjxk) = x̂j ◦ x̂k, Op(pjxk) =
1
2
(p̂j ◦ x̂k + x̂j ◦ p̂k)

for any 1 ≤ j, k ≤ n.
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Various maps µ : COform → QOform that are right inverses for aver have been considered in the
literature. None of these maps is a homomorphism. It is clear that to specify µ, it is sufficient to
define it on the monomials xαpβ, α, β ∈ Z

n
+.

If µ(F ) = F̂ , then F is called a symbol of the quantum observable F̂ . Various maps µ define
xp-symbols, px-symbols, Weyl, Wick, and anti-Wick symbols, etc.

For example,

• xp-symbols correspond to a map µ such that µ(xαpβ) = x̂α ◦ p̂ β;
• px-symbols correspond to µ(xαpβ) = p̂ β ◦ x̂α;
• for the Weyl symbols, we have

µ(xαpβ) =
n∏

j=1

1

C
βj

αj+βj

∑
type zj=(αj ,βj)

π(zj),

where zj is a monomial in Q̃Oform

j , which is the space of quantum observables with n = 1 and
the generators x̂j and p̂j.

11. IMPLICIT FUNCTION THEOREM

We say that observables F1(x̂, p̂ ), . . . , Fm(x̂, p̂ ) ∈ Q̃O are independent at zero if the functions
ãver F1(x, p), . . . , ãver Fm(x, p) ∈ CO are independent at zero. An analogous definition is used for
F1, . . . , Fm ∈ QO.

Theorem 1 (implicit function theorem in Q̃O). Let

X1(x̂, p̂ ), . . . ,Xn(x̂, p̂ ), P1(x̂, p̂ ), . . . , Pn(x̂, p̂ ) ∈ Q̃O (11.1)

be observables that are independent at zero and are such that X(0, 0) = P (0, 0) = 0. Then there
exist u1, . . . , un, v1, . . . , vn ∈ Q̃O such that x̂j = uj(X,P ) and p̂j = vj(X,P ).

Corollary 11.1 (implicit function theorem in QO). Let

X1(x̂, p̂ ), . . . ,Xn(x̂, p̂ ), P1(x̂, p̂ ), . . . , Pn(x̂, p̂ ) ∈ QO

be observables that are independent at zero and are such that X(0, 0) = P (0, 0) = 0 and

[Xj ,Xk] = [Pj , Pk] = 0, [Pj ,Xk] = δjk for any 1 ≤ j, k ≤ n. (11.2)

Then there exist u1, . . . , un, v1, . . . , vn ∈ QO such that

π(x̂j) = ûj(X,P ), π(p̂j) = v̂j(X,P ).

Indeed, equations (11.2) imply that for any 1 ≤ j, k ≤ n,

Xj ◦ Xk − Xk ◦ Xj = Pj ◦ Pk − Pk ◦ Pj = 0, Pj ◦ Xk − Xk ◦ Pj = δjkr.

Therefore, F (X,P ) = 0 for any observable F ∈ J . Hence, we can set û = π(u) and v̂ = π(v), where
u, v ∈ Q̃O are constructed in Theorem 1.

Proof of Theorem 1. Let(
X
P

)
= L

(
x̂
p̂

)
+ F (x̂, p̂ ), F (x̂, p̂ ) =

∞∑
k=2

Fk(x̂, p̂ ), (11.3)
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where L : R
2n → R

2n is a linear operator and Fk are vector-valued homogeneous forms of degree k.
We set (

X̂
P̂

)
= L−1

(
X
P

)
, F̂ (x̂, p̂ ) = L−1F (x̂, p̂ ), F̂k(x̂, p̂ ) = L−1Fk(x̂, p̂ ).

Then equation (11.3) takes the form (
X̂
P̂

)
=

(
x̂
p̂

)
+ F̂ (x̂, p̂ ). (11.4)

We can assume that for some a > 0,

Fk(x̂, p̂ ) � qakξk, k ≥ 2, ξ = x1 + . . . + xn + p1 + . . . + pn, (11.5)

where the majorant inequalities (11.5) should be understood in the sense that qakξk is a majorant
for each component of the vector Fk. Then

F̂k(x̂, p̂ ) � q∗a
kξk, k ≥ 2, q∗ = Lq, (11.6)

where L = ‖L−1‖1 is the l1-norm of L−1.
We want to solve equations (11.4) with respect to x̂ and p̂; i.e., we want to construct observables

x̂ = u(X̂, P̂ ) and p̂ = v(X̂, P̂ ) that satisfy (11.4).
Equation (11.4) can be written as follows:(

u
v

)
= M

(
u
v

)
, (11.7)

where

M :

(
u(X̂, P̂ )
v(X̂, P̂ )

)
�→

(
X̂
P̂

)
− F̂ (u, v).

Let ϑ(X̂, P̂ ) denote the 2n-dimensional vector
(

u(X̂,P̂ )

v(X̂,P̂ )

)
. Consider the sequence ϑ0, ϑ1, . . . ,

where

ϑ0 =
(

X̂
P̂

)
, ϑs+1 = M(ϑs).

The following proposition is obvious.
Proposition 11.1. The observables ϑs+1 and ϑs coincide in all orders less than s + 1.
Corollary 11.2. The functions

(
u
v

)
= ϑs(X̂, P̂ ) satisfy (11.7) in all orders less than s + 1.

Corollary 11.3. The sequence ϑ0, ϑ1, . . . converges order by order to ϑ ∈ Q̃Oform, a formal
solution of (11.7).

Proof of Proposition 11.1. The proof is performed by induction. �
Proposition 11.2. The limit ϑ lies in Q̃O.
Proof. We set ϑ(X̂, P̂ ) =

∑∞
k=1 ϑk(X̂, P̂ ), where ϑk is a homogeneous form of degree k. Below

we replace the arguments X̂ and P̂ of the functions ϑ and ϑk by x̂ and p̂.
Given an analytic function g(ξ) with ξ satisfying (11.5), we say that ϑ(x̂, p̂ ) � g(ξ) if g(ξ) is a

majorant for each component of the vector ϑ. Assuming that ϑk(x̂, p̂ ) � akqkξ
k, we will estimate

the coefficients qk.
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We define f(ξ) =
∑∞

k=0 ak+2qk+2ξ
k. Then

ϑ(x̂, p̂ ) � ξ + ξ2f(ξ).

By (11.7),

ϑ1(x̂, p̂ ) =
(

x̂
p̂

)
, ϑs(x̂, p̂ ) = −

s∑
k=2

(
F̂k(ϑ(x̂, p̂ ))

)
s
, s ≥ 2, (11.8)

where (·)s denotes a homogeneous form of degree s in x̂ and p̂. It is important to note that the
right-hand side of the second equation in (11.8) depends only on the forms ϑ1, . . . , ϑs−1.

Equations (11.8) and (11.6) imply that

ϑs(x̂, p̂ ) �
(

s∑
k=2

q∗a
k(2n)k

(
ξ + ξ2f(ξ)

)k

)
s

, s ≥ 2,

where the subscript s denotes the coefficient at ξs. This means that

ϑ(x̂, p̂ ) � ξ +
∞∑

k=2

q∗a
k(2n)k

(
ξ + ξ2f(ξ)

)k
.

Hence, we can take an f that satisfies the equation

ξ2f(ξ) =
∞∑

k=2

q∗a
k(2n)k

(
ξ + ξ2f(ξ)

)k
,

which is equivalent to (
1 − 2an(ξ + ξ2f)

)
f = 4n2q∗a

2(1 + ξf)2.

This equation, quadratic in f , has an analytic solution

f(ξ) =
1 − Aξ −

√
(1 − Aξ)2 − B2ξ2

2Cξ2
,

A = 2na(1 + 4naq∗), B2 = 32n3a3q∗(1 + 2naq∗), C = 2na(1 + 2naq∗).

Obviously, 0 < B < A and 0 < C < A. By Proposition C.2, we have

f(ξ) � B(A + B)
8C(1 − (A + B)ξ)

. �

Theorem 1 is proved. �
Remark 11.1. If observables (11.1) are Hermitian, then the observables u and v constructed

in Theorem 1 are also Hermitian.

12. AUTOMORPHISMS OF QO
Let X̂1(x̂, p̂ ), . . . , X̂n(x̂, p̂ ), P̂1(x̂, p̂ ), . . . , P̂n(x̂, p̂ ) ∈ QO be observables that satisfy (11.2). We

call such set of observables canonical.
We define a map

A : QO → QO, QO � F (x̂, p̂ ) �→ A(F )(x̂, p̂ ) = F
(
X̂(x̂, p̂ ), P̂ (x̂, p̂ )

)
.
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Proposition 12.1. The map A is an automorphism of (QO, ◦, [ · , · ]); i.e.,

(a) A is linear,
(b) A(F ◦ G) = A(F ) ◦ A(G),

(c) A(r) = r,

(d) A([F,G]) = [A(F ),A(G)].

Proof. Assertions (a), (b), and (c) are obvious, and (c) implies (d). �
We call the automorphism A canonical. The implicit function theorem implies that for any

canonical automorphism A, there exists an inverse automorphism A−1. Canonical automorphisms
form a group Aut(QO).

Consider a map a : CO → CO generated by a symplectic change of variables

(x, p) �→ (X(x, p), P (x, p)), X = aver X̂, P = aver P̂ .

More precisely,

CO � f(x, p) �→ a(f)(x, p) = f(X(x, p), P (x, p)).

Then the diagram

QO A

aver

QO
aver

CO a CO

is commutative.
Obviously, a is an automorphism of

(
CO, ·, {· , ·}

)
. We say that a is compatible with A. For

an automorphism a : CO → CO, the corresponding A : QO → QO that is compatible with a is not
unique.

An automorphism A is called Hermitian if it preserves QOH, i.e., A(QOH) ⊂ QOH. Any Her-
mitian automorphism can be regarded as an automorphism of the Lie–Jordan algebra (QOH, ([ · , · ]),
[ · , · ]). Below Aut(QOH) denotes the group of such automorphisms. Obviously, A ∈ Aut(QOH) if
and only if the observables

A(x̂1), . . . ,A(x̂n),A(p̂1), . . . ,A(p̂n)

are Hermitian.

13. THE OPERATORS e[H,·]

For any H,F ∈ QO, we set

e[H,·]F = F +
1
1!

[H,F ] +
1
2!

[H, [H,F ]] + . . . . (13.1)

Obviously, F (x̂, p̂, t) := et[H,·]F0(x̂, p̂ ) is a solution of the Heisenberg equation

Ḟ = [H,F ], F
∣∣
t=0

= F0, F0,H ∈ QO.

If H is quadratic (i.e., H ∈ π(F2)), then the corresponding change (x̂, p̂ ) �→ e[H,·](x̂, p̂ ) is linear.
In particular, the corresponding automorphism A preserves the spaces Fk, k ∈ Z+. The group of
such automorphisms is isomorphic to the group of linear symplectic self-maps of R

2n.
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Proposition 13.1. For any H,F ∈ QO such that

F � A

a − ξ
, H � Bξs

b − ξ
, 0 < a < b, A,B > 0, ξ = x1 + . . . + xn + p1 + . . . + pn,

the estimate et[H,·]F � Φ(ξ, t) holds, where

Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A

a − µt − ξ
if s = 1,

A

a − eµtξ
if s = 2,

A

a − ξ − (s − 2)aµtξs−2
if s ≥ 3,

µ =
2nsbB

(b − a)2
.

Remark 13.1. The case s = 0 can always be reduced to the case s = 1 if we replace H(x̂, p̂ )
by H(x̂, p̂ ) − H(0, 0).

Corollary 13.1. For any H � Bξs

b−ξ with s ≥ 2, the operator et[H,·] : QO → QO is well-defined
for any t ∈ C.

Proof of Proposition 13.1. We define

W0(x̂, p̂ ) = F (x̂, p̂ ), Wm+1 = [H,Wm] for any m ∈ Z+.

The basic fact used in the proof is that

Wm �
(

µξs−1 ∂

∂ξ

)m A

a − ξ
. (13.2)

This estimate is easily checked by induction. For m = 0, it is obvious. Suppose that it is true
for m = k. Then

Wk+1 �
{{

Bξs

b − ξ
,

(
µξs−1 d

dξ

)k A

a − ξ

}}
.

Since d
dξ

ξs

b−ξ � sbξs−1

(b−ξ)2
for s ≥ 1, we have

Wk+1 � 2nsbBξs−1

(b − ξ)2
d

dξ

((
µξs−1 d

dξ

)k A

a − ξ

)
.

Now we note that
d

dξ

((
µξs−1 d

dξ

)k A

a − ξ

)
=

1
a − ξ

P

(
1

a − ξ
, ξ

)
for some polynomial P (u, v) and

1
(b − ξ)(a − ξ)

� 1
(b − a)(a − ξ)

for any 0 < a < b. Hence,

Wk+1 � 2nsbBξs−1

(b − a)2
d

dξ

((
µξs−1 d

dξ

)k A

a − ξ

)
=

(
µξs−1 d

dξ

)k+1 A

a − ξ
.
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Estimate (13.2) implies that

et[H,·]F � A

a − gt
s(ξ)

,

where gt
s is the phase flow of the ordinary differential equation ξ̇ = µξs−1. It remains to apply the

equations

gt
s(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ + µt if s = 1,

eµtξ if s = 2,

ξ

(1 − (s − 2)µtξs−2)1/(s−2)
� ξ

1 − (s − 2)µtξs−2
if s ≥ 3.

The proposition is proved. �
Proposition 13.2. For any H ∈ QO, H = O2(x̂, p̂ ), the map e[H,·] : QO → QO is a canonical

automorphism.
Proof. Take any F,G ∈ QO. By Corollary 13.1, the observables e[H,·]F and e[H,·]G lie in QO.

Hence,

e[H,·]F ◦ e[H,·]G = F ◦ G +
1
1!

(
[H,F ] ◦ G + F ◦ [H,G]

)
+ . . .

= F ◦ G +
1
1!

[H,F ◦ G] + . . . = e[H,·]F ◦ G,[
e[H,·]F, e[H,·]G

]
= [F,G] +

1
1!

(
[[H,F ], G] + [F, [H,G]]

)
+ . . .

= [F,G] +
1
1!

[H, [F,G]] + . . . = e[H,·][F,G]. �

Remark 13.2. For any H ∈ QOH, H = O2(x̂, p̂ ), the corresponding automorphism e[H,·] is
Hermitian.

14. ANALYTIC CONTINUATION

The simplest canonical automorphism of QO is generated by the observables

X = x̂ + x0, P = p̂ + p0, (x0, p0) = const ∈ C
2n.

We say that an observable F (x̂, p̂ ) ∈ QO can be continued analytically to the point (x0, p0) ∈
C

2n if F (x̂ + x0, p̂ + p0) ∈ QO. Here we mean that if we substitute x̂ + x0 and p̂ + p0 for x̂ and p̂

in the expansion of F in homogeneous forms (more precisely, in the expansion of some F̃ ∈ Q̃O,
π(F̃ ) = F ) and re-expand the result in x̂ and p̂, we obtain an element of QO.

Analytic continuation can be performed several times. Hence, like holomorphic functions, the
observables from QO may be analytically continued (if this is possible) along curves on C

2n.
We call an observable F ∈ QO analytic on a set D ⊂ C

2n if F can be analytically continued
to D. In this case, we write F ∈ QO(D).

Any observable F ∈ QO(D), D ⊂ C
2n, defines a map

F : D → QO, D � (x, p) �→ F(x, p; x̂, p̂ ) = F (x + x̂, p + p̂ ).

We have the following obvious equation: for any point (x0, p0) ∈ D,

F(x0 + x, p0 + p; x̂, p̂ ) = F(x0, p0; x̂ + x, p̂ + p), (14.1)

where (x, p) ∈ C
2n is an arbitrary small vector.
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Hence, we obtain an equivalent definition of QO(D). We say that F is analytic in D if it is
defined by the equation

F (x + x̂, p + p̂ ) = F(x, p; x̂, p̂ ), (x, p) ∈ D,

for some F : D → QO satisfying (14.1).
If D ⊂ R

2n and F
(
x̂, p̂

)
= F (x̂, p̂ ), then we say that F is real-analytic on D.

An observable F is said to be Hermitian at the point (x0, p0) if F (x̂ + x0, p̂ + p0) is Hermitian
at zero.

Proposition 14.1. Suppose that F ∈ QO(D) is Hermitian at zero. Then it is Hermitian at
any point (x0, p0) ∈ D.

Proof. It is sufficient to verify that this statement holds for F = π(fz + fIz) with any
monomial z. In this case, the proposition is obvious. �

Proposition 14.2. Suppose that F ∈ CO is a majorant for F̂ ∈ QO (F̂ � F ) and F is
analytic in the domain

D(x0, p0) =
{
(x, p) ∈ C

2n : |xj | ≤ x0
j , |pj | ≤ p0

j , j = 1, . . . , n
}
.

Then F̂ ∈ QO(D(x0, p0)).

Proof. Indeed, let Ĝ ∈ Q̃O be such that

π(Ĝ) = F̂ , Ĝ � F.

Since the function

f(x, p) = F
(
x1 + |x̃1|, . . . , xn + |x̃n|, p1 + |p̃1|, . . . , pn + |p̃n|

)
is analytic at zero for any (x̃, p̃ ), the observable G̃(x̂, p̂ ) = Ĝ(x̂ + x̃, p̂ + p̃ ) satisfies

G̃(x̂, p̂ ) � f(x, p), π
(
G̃(x̂, p̂ )

)
= F̂ (x̂ + x̃, p̂ + p̃ ). �

If F ∈ QO(D), we have F ∈ QO(D1) for any D1 ⊂ D. Hence, we have a natural restriction
map QO(D) → QO(D1).

15. FUNCTION OF AN OBSERVABLE

Let F1, . . . , Fk ∈ QO(D) be commuting observables:

[Fj , Fs] = 0, 1 ≤ j, s ≤ k.

Consider the vector-valued function aver F , where F = (F1, . . . , Fk). Denote D0 = F (D) ⊂ C
k.

Proposition 15.1. Let f : D0 → C be an analytic function. Then f(F ) ∈ QO(D) is well-
defined and aver f(F ) = f(aver F ).

Moreover, if F1, . . . , Fk ∈ QOH and f is real-analytic, we have f(F ) ∈ QOH.
Proof. For any (x0, p0) ∈ D, we have Fs(x̂ + x0, p̂ + p0) ∈ QO, s = 1, . . . , k. Set z0 =

aver F (x0, p0) ∈ D0. Then

F
(
x̂ + x0, p̂ + p0

)
− z0 = Φ(x̂, p̂ ) = O1(x̂, p̂ ). (15.1)

Since f(z + z0) is analytic in z at the point z = 0 ∈ C
k,

f(z + z0) =
∑
l∈Z

k
+

flz
l, fl = fl(z0) ∈ C,
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we can define
f
(
F (x0 + x̂, p0 + p̂ )

)
=

∑
l∈Z

k
+

flΦl ∈ QOform. (15.2)

Since the observables Φ1, . . . ,Φk commute, any monomial Φl, l ∈ Z
k
+, is well-defined.

Using majorants, one can easily verify that f
(
F (x0 + x̂, p0 + p̂ )

)
∈ QO.

If the observables F1, . . . , Fk are Hermitian and f is real-analytic, we take (x0, p0) ∈ D ∩ R
2n

in (15.1) and (15.2):

f(F (x̂, p̂ )) =
∑
l∈Z

k
+

flF l,

where the coefficients fl are real. We have I(flF l) = flF l because Fj = I(Fj) commute. Hence,
f(F ) is Hermitian at the point (x0, p0), and therefore, it is Hermitian everywhere in D. �

16. DARBOUX THEOREM

Theorem 2. Let P1, . . . , Pn ∈ QO be commuting observables ([Pj , Ps] = 0, 1 ≤ j, s ≤ n) that
are independent at zero. Then there exists an automorphism A ∈ Aut(QO) such that

A(Pj) = p̂j , j = 1, . . . , n.

Corollary 16.1 (noncommutative Darboux theorem). Let P1, . . . , Pn ∈ QO be commuting
observables that are independent at zero. Then there exist X1, . . . ,Xn ∈ QO such that the set of
observables X1, . . . ,Xn, P1, . . . , Pn is canonical.

Moreover, suppose that X̃1, . . . , X̃n, P1, . . . , Pn is another canonical set with X̃1, . . . , X̃n ∈ QO.
Then

X̃j = Xj +
[
Φ̂(P1, . . . , Pn, r),Xj

]
, j = 1, . . . , n,

where Φ̂ ∈ QO is an analytic observable that depends only on P and r.
To show that the noncommutative Darboux theorem (NDT) follows from Theorem 2, we define

Xj(x̂, p̂ ) = A−1(x̂j). Then, obviously, the observables X and P form a canonical set.
To prove the second part of NDT, we note that for any s = 1, . . . , n, the observable X̃s − Xs

commutes with all Pj , j = 1, . . . , n. Hence, Φs := X̃s − Xs depend only on P and r. It remains to
use the fact that the set of analytic observables

X1 + Φ1(P, r), . . . , Xn + Φn(P, r), P1, . . . , Pn

is canonical if and only if Φj(P, r) =
[
Φ̂(P, r),Xj

]
for some Φ̂ ∈ QO. �

Remark 16.1. If P1, . . . , Pn ∈ QOH, it is possible to choose an automorphism A ∈ Aut(QOH)
in Theorem 2.

17. PROOF OF THEOREM 2

The proof is based on a rapidly converging procedure similar to the Newton method. We
construct the automorphism A as the limit

A = lim
m→∞

Am, Am+1 = e[χm,·] ◦ Am, m = 0, 1, . . . .

The automorphism A0 is linear. It reduces P1, . . . , Pn to the form

A0Pj = constj + p̂j + P
(0)
j , P

(0)
j = O2(x̂, p̂ ), P

(0)
j � µ0ξ

2

1 − λ0ξ
, j = 1, . . . , n.

In what follows, we assume without loss of generality that constj = 0.
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We denote
AmPj = p̂j + P

(m)
j , j = 1, . . . , n.

Below we will see that P
(m)
j = O2m+1(x̂, p̂ ).

Let P̌
(m)
j be the polynomial part of P

(m)
j of degree less than 2m+1 + 1:

P
(m)
j = P̌

(m)
j + Q

(m)
j , deg P̌

(m)
j ≤ 2m+1, Q

(m)
j = O2m+1+1(x̂, p̂ ). (17.1)

We define the Hamiltonian χm as a solution of the system

[p̂j , χm] = P̌
(m)
j . (17.2)

Lemma 17.1. Suppose that P
(m)
j = O2m+1(x̂, p̂ ), j = 1, . . . , n, and, moreover,

P
(m)
j (x̂, p̂ ) � µmξ2m+1

1 − λmξ
, j = 1, . . . , n, ξ = x1 + . . . + xn + p1 + . . . + pn,

for some constants µm and λm. Then

Q
(m)
j (x̂, p̂ ) � µmλ2m

m ξ2m+1+1

1 − λmξ
, (17.3)

and system (17.2) has a solution χm = O2m+2(x̂, p̂ ),

χm(x̂, p̂ ) � nµmξ2m+2

1 − λmξ
. (17.4)

We prove Lemma 17.1 in Appendix E.

Proposition 17.1. P
(m+1)
j = U

(m+1)
j + V

(m+1)
j , where

U
(m+1)
j = − 1

0!
Q

(m)
j − 1

1!
[
χm, Q

(m)
j

]
− 1

2!
[
χm,

[
χm, Q

(m)
j

]]
− . . . ,

V
(m+1)
j =

(
1
1!

− 1
2!

)[
χm, P̌

(m)
j

]
+

(
1
2!

− 1
3!

)[
χm,

[
χm, P̌

(m)
j

]]
+ . . . .

Proof. We have

p̂j + P
(m+1)
j = p̂j + P

(m)
j +

1
1!

[
χm, p̂j + P

(m)
j

]
+

1
2!

[
χm,

[
χm, p̂j + P

(m)
j

]]
+ . . . .

Now it remains to apply (17.1) and (17.2). �
Corollary 17.1. If P

(m)
j = O2m+1(x̂, p̂ ), we have P

(m+1)
j = O2m+1+1(x̂, p̂ ).

Lemma 17.2. For any m ∈ Z+ and σm > 0,

U
(m+1)
j � µmλ2m

m

ξ2m+1+1

1 − Am − (1 + σm)λmξ
,

V
(m+1)
j � 2n2µ2

m(2m + 3)2(1 + σm)3

σ3
m

ξ2m+1+1

1 − Am − (1 + σm)λmξ
,

Am = 6n2µmλ−2m

m (2m+1 + 3)
(1 + σm)2

σ2
m

. (17.5)

We prove Lemma 17.2 in Appendix F.
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Thus, we have obtained the sequence Am inductively. Below we will show that Am ≤ 1/2 and
Am → 0 as m → ∞. Three sequences take part in the construction of P

(m)
j : {µm}, {λm}, and

{σm}, m ∈ Z+, where

µm+1 ≥ µmλ2m

m

1 − Am
+

2n2µ2
m(2m + 3)2(1 + σm)3

σ3
m(1 − Am)

,

λm+1 =
1 + σm

1 − Am
λm.

(17.6)

We set
λ−1 = 1, µm = µ0λ

2m

m−1, σm = σ0(m + 1) · 2−m.

Proposition 17.2. There exist constants cλ and cσ such that for any λ0 and σ0 satisfying

λ0 ≥ cλn2(µ0 + 1), σ0 ≥ cσn
√

µ0 + 1, (17.7)

inequalities (17.6) hold and

Am ≤ 2−m−1 for any m ∈ Z+. (17.8)

Proof. Since the sequences λm, µm, σm, and Am are fixed, we see that (17.6) and (17.8) hold
provided that

1 ≥ 2
(

λm−1

λm

)2m

+ 4n2µ0(2m + 3)2
(

1 + σm

σm

)3 (
λm−1

λm

)2m+1

,

1 ≥ 6n2µ0 · 2m+2(2m+3 + 3)
(

1 + σm

σm

)2 (
λm−1

λm

)2m

.

It is easy to see that for m = 0, these inequalities hold if cλ is sufficiently large, and for m > 0, they
hold if cσ is sufficiently large. �

Remark 17.1. If the observables P1, . . . , Pn in Theorem 2 are Hermitian, the automorphism A
can also be chosen Hermitian.

18. QUANTUM OBSERVABLES OVER A SYMPLECTIC MANIFOLD

Let (M, {· , ·}) be a real-analytic Poisson manifold with the nondegenerate Poisson bracket {· , ·}.
Let CO(M) be the Lie algebra of analytic functions on M .

Consider an open covering of M by coordinate neighborhoods Vj with canonical coordinates
(x, p)j . Let CO(Vj) be the Lie algebra of analytic functions on Vj, and let QO(Vj) denote the
algebra of quantum observables over Vj . We have the homomorphisms

averj : QO(Vj) �→ CO(Vj).

We set (x, p) = (x, p)j and (ξ, η) = (x, p)k for short. The transfer functions τj,k,

τj,k(x, p) = (ξ, η),

which are defined on Vj ∩ Vk, induce isomorphisms Tj,k : CO(Vk)
∣∣
Vj∩Vk

→ CO(Vj)
∣∣
Vj∩Vk

: for any
fk = fk(ξ, η) ∈ CO(Vk)

∣∣
Vj∩Vk

,

fk → fj = Tj,kfj ∈ CO(Vj)
∣∣
Vj∩Vk

, fj(x, p) = fk ◦ τj,k(x, p).
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Suppose that for any j and k, there is an isomorphism T̂j,k : QO(Vk)
∣∣
Vj∩Vk

→ QO(Vj)
∣∣
Vj∩Vk

that is compatible with Tj,k, i.e., the diagrams

QO(Vk)
∣∣
Vj∩Vk

T̂j,k

averk

QO(Vj)
∣∣
Vj∩Vk

averj

CO(Vk)
∣∣
Vj∩Vk

Tj,k CO(Vj)
∣∣
Vj∩Vk

are commutative. Moreover, suppose that for any j, k, and l such that Vj ∩ Vk ∩ Vl �= ∅,

T̂j,k ◦ T̂k,l ◦ T̂l,j = id.

Then these isomorphisms define the algebra QO(M), which is called the algebra of quantum
observables over M .

Apparently, the existence of such isomorphisms T̂j,k is not trivial in the general situation. How-
ever, there are some simple examples.

Example 1. Let M be a cotangent bundle T ∗N , dim N = n, with the standard Poisson
structure. Consider a covering Uj of the manifold N . Then Vj = T ∗Uj is a covering of M . If x are
coordinates on Uj, we have canonical coordinates (x, p) on Vj . In this case, τj,k have the form

(ξ, η) = τj,k(x, p) =
(
γj,k(x),

(
BT

j,k(x)
)−1

p
)
, Bj,k(x) =

(
∂γj,k(x)

∂x

)
,

where BT
j,k is the transpose of the matrix Bj,k. We set

T̂j,k

(
ξ̂
)

= γj,k(x̂), T̂j,k(η̂) =
1
2

((
BT

j,k(x̂)
)−1 ◦ p̂ +

(
p̂T ◦ B−1

j,k (x̂)
)T

)
. (18.1)

There exists a unique isomorphism T̂j,k : QO(Vk)
∣∣
Vj∩Vk

→ QO(Vj)
∣∣
Vj∩Vk

satisfying (18.1).

Example 2. The group (Z,+) acts on the algebra QO(Rn × D), D ⊂ R
n:

l ∈ Z, F ∈ QO(Rn × D) −→ l(F )(x̂, p̂ ) = F (x̂ + ej l, p̂ ),

where ej is the jth basis vector in R
n. The fixed points of this action are called observables that

are 2π-periodic in xj . They form a subalgebra in
(
QO(Rn × D), ◦, [ · , · ]

)
.

It is natural to identify the subalgebra of observables that are 2π-periodic in all xj , j = 1, . . . , n,
with QO(Tn × D).

19. LIOUVILLE THEOREM

Let M be a real-analytic symplectic manifold, dim M = 2n, such that the algebra QO(M) is
defined. Suppose that n analytic Hermitian observables F̂1, . . . , F̂n ∈ QOH(M) are such that

[F̂j , F̂k] = 0, 1 ≤ j, k ≤ n.

Then the real-analytic functions Fj = aver F̂j , j = 1, . . . , n, form a commutative set:

{Fj , Fk} = 0, 1 ≤ j, k ≤ n.

Let D ⊂ M be a domain on which the classical angle–action variables

(ϕ, I) ∈ T
n × D0, D0 ⊂ R

n,
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are defined. The change of the variables

τ : T
n × D0 → D, (ϕ, I) �→ (x, p) = τ(ϕ, I)

is symplectic. Therefore, it generates an isomorphism a of the Lie algebras CO(D) and CO(Tn×D0):

CO(D) � f �→ a(f) = f ◦ τ ∈ CO(Tn × D0).

Consider the algebra QO(Tn × D0) with generators ϕ̂ and Î.
Theorem 3. For any point z0 = τ(ϕ0, I0) ∈ D, there exists a neighborhood U ⊂ D0 of the

point I0 and a Hermitian isomorphism

A : QO(D•) → QO(Tn × U), D• = τ(Tn × U),

such that the diagram

QO(D•)
A

aver

QO(Tn × D0)

aver

CO(D•)
a CO(Tn × D0)

is commutative and
A(Fj) = Fj(Î , r), j = 1, . . . , n. (19.1)

Remark 19.1. It is natural to call the observables Îj = A(p̂j) and ϕ̂j = A(x̂j) quantum
action–angle variables.

Remark 19.2. We believe that A can always be continued to a Hermitian isomorphism of
QO(D) and QO(Tn × D0).

Proof of Theorem 3. Let Ij = Φj(F ), j = 1, . . . , n, be classical actions. We define Ĵj =
Φj(F̂ ) ∈ QO(D). Since the observables F̂ commute, these equations make sense. Obviously,
Jj := aver Ĵj = Ij and F̂j are functions of Ĵ :

F̂j = F0
j (Ĵ(x̂, p̂ )). (19.2)

Let B0 ⊂ D be a ball on which, by virtue of the noncommutative Darboux theorem, the set of
observables can be extended to a canonical set by adding a certain ψ̂ = (ψ̂1, . . . , ψ̂n) ∈ QOH(B0).

Let A0 : QO(V0) → QO(B0), V0 ⊂ R
2n
ψ,J , be the corresponding Hermitian isomorphism:

A0(ψ̂j) = x̂j , A0(Ĵj) = p̂j, j = 1, . . . , n,

and a0 : CO(V0) → CO(B0) be its average: aver ◦ A0 = a0 ◦ aver.

Lemma 19.1. For sufficiently small t ∈ R, the observables ψ̂l(x̂, p̂ ) and et[Ĵj ,·]ψ̂l(x̂, p̂ ) coincide
on B0 ∩ gt

Jj
B0, where gt

Jj
: D → D is the flow of the Hamiltonian system with Hamiltonian Jj .

Proof. This statement becomes obvious in the canonical coordinates ψ̂, Ĵ . �
Lemma 19.2. For any j, l = 1, . . . , n,

a0

(
e2π{Jj ,·}Jl

)
= a0(Jl), a0

(
e2π{Jj ,·}ψl − 2πδlj

)
= a0(ψl).

Proof. These equations follow from the definition of the classical action–angle variables. �
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Lemma 19.3. For any j, l = 1, . . . , n,

A0

(
e2π{Ĵj ,·]Ĵl

)
= A0(Ĵl), A0

(
e2π{Ĵj ,·}ψ̂l − 2πδlj

)
= A0(ψ̂l + Ψ̂lj), (19.3)

where

Ψ̂lj = r ◦
[
Λ̂j(Ĵ , r), ψ̂l

]
(19.4)

for some observables Λ̂j ∈ QO(V0), Λ̂j = Λ̂j(Ĵ , r).
Proof. The first equation in (19.3) is obvious. To prove (19.4), we apply aver to the second

equation in (19.3). By Lemma 19.2, we see that aver Ψ̂lj = 0. Now equation (19.4) follows from the
fact that the set of observables

ψ̂l + Ψ̂lj, Ĵl, l = 1, . . . , n,

is canonical for any j = 1, . . . , n. �
We define

Îj := Ĵj −
1
2π

r ◦ Λ̂j , A0jΨ
(
ψ̂, Ĵ

)
:= A0Ψ

(
ψ̂ − 2πej , Ĵ

)
, (19.5)

where Ψ ∈ QO(V0) is an arbitrary observable and ej ∈ R
n is the jth unit vector.

Lemma 19.4. The maps

Sj := A0j ◦ e2π[Îj ,·] ◦ A−1
0 : QO(B0) → QO(B0)

are identity automorphisms.
Proof. It is sufficient to verify that Sj acts as the identity on some canonical set of observables

in QO(B0), for example, on ψ̂(x̂, p̂ ), Ĵ(x̂, p̂ ). We have

Sj(ψl(x̂, p̂ )) = A0j ◦ e2π[Îj ,·]ψl = A0j ◦ e−r◦[Λ̂j ,·](ψ̂l + 2πδlj + Ψ̂lj

)
= A0j

(
ψ̂l − r ◦

[
Λj , ψ̂l

]
+ 2πδlj + Ψ̂lj

)
= A0j

(
ψ̂l + 2πδlj

)
= ψ̂l(x̂, p̂ ).

Here the second equality follows from (19.3), and the fourth equality from (19.4).
The equation Sj(Ĵ) = Ĵ is obvious.
Now we define ϕ̂ that are canonically conjugate to Î; we first do this locally and then use

continuation by e[Î ,·]. Lemma 19.4 implies the periodicity of the quantum angles ϕ̂. Equation (19.1)
follows from (19.2) and the first equation in (19.5). Theorem 3 is proved. �

Example 1 (harmonic oscillator). For H = 1
2(p̂ 2 + x̂2), the action is Î = H and the angle

is ϕ̂ = 1
i ln(p̂ − ix̂) or ϕ̂ = −1

i ln(p̂ + ix̂). If we need a Hermitian observable, we can take ϕ̂ =
1
2i

(
ln(p̂ − ix̂) − ln(p̂ + ix̂)

)
.

Example 2 (separation of variables). Consider a Hamiltonian

H = Φ
(
Ĥ1(x̂1, p̂1), . . . , Ĥn(x̂n, p̂n)

)
,

where Φ is an analytic function. Such a system is obviously Liouville integrable with F̂j = Ĥj(x̂j , p̂j).
In this case, we say that the variables separate.

Other examples of quantum Liouville integrable systems can be found in [3, 7, 8]. Some analogies
between quantum and classical problems of integrability are discussed in [9, 10].
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In the action–angle variables, quantum dynamics becomes very simple. Indeed, consider the
Heisenberg equation

Ḟ = [H,F ], F
∣∣
t=0

= F0, F0,H ∈ QO(Tn × D), D ⊂ R
n.

Suppose that the Hamiltonian does not depend on ϕ̂, i.e., H = H(Î ).
We define a quantum frequency vector

ω = (ω1, . . . , ωn), ωj = DjH(Î ), j = 1, . . . , n,

where Dj is the jth partial derivative.
If F0 = ϕ̂j , the equation can be solved easily: F(ϕ̂, Î, t) = ϕ̂j + ωj(Î )t. Hence, for any

F0(ϕ̂, Î ) ∈ QO(Tn × D), we have

F(ϕ̂, Î , t) = Φt(F0)(ϕ̂, Î ),

where Φt = e[tH,·] : QO(Tn × D) → QO(Tn × D) is the canonical isomorphism defined by the
equations Φt(ϕ̂, Î ) = (ϕ̂ + ω(Î )t, Î ). In fact, for any G ∈ QO(Tn × D), we have

Φt(G)(ϕ̂, Î ) = G(ϕ̂ + ω(Î )t, Î ).

In the original coordinates, the solution of the Heisenberg equation

Ḟ = [H,F ], F |t=0 = F0,

has the form
F (x̂, p̂ ) = A−1 ◦ Φt ◦ A(F0)(x̂, p̂ ).

20. EIGENFUNCTIONS OF THE SCHRÖDINGER OPERATOR

In addition to simple dynamics (in terms of the solutions of the Heisenberg equation), quan-
tum Liouville integrability implies some important properties of the spectrum of the corresponding
Schrödinger operator. In this section, we present several conditional results that partially confirm
this fact. In the traditional language, some analogous statements are presented in [4].

Below we associate with r the skew-Hermitian operator −i� · id on L2(Rn).
Proposition 20.1. Suppose that observables F1, . . . , Fk,Φ ∈ QO(R2n) satisfy the equations

[Fj , Fl] = 0, [Fj ,Φ] = iΦ ◦ µj(F, ir). (20.1)

Here µj : R
k+1 → R are some functions that are real-analytic in the first k arguments and smooth in

the last argument. Suppose also that F1, . . . , Fk and Φ can be associated with operators on L2(Rn).
Let ψ ∈ L2(Rn) be an eigenfunction for Fj ,

Fj · ψ = λjψ, j = 1, . . . , k, (20.2)

that belongs to the domain of the operator Φ. Then the function ϕ := Φ · ψ lies in the domain of
the operators F1, . . . , Fk and

Fj · ϕ = (λj + �µj(λ, �))ϕ.

Proof. Direct calculations yield

Fj · ϕ = Fj ◦ Φ · ψ = Φ ◦ Fj · ψ + r ◦ [Fj ,Φ] · ψ = λjΦ · ψ + ir ◦ Φ ◦ µj(F, ir) · ψ

= (λj + �µj(λ, �))ϕ. �
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Proposition 20.2. For any F = F (p̂, ir) ∈ QOform and k ∈ C
n, the following formal identity

holds: [
F (p̂, ir), ei〈k,x̂〉] = ei〈k,x̂〉 ◦ F (p̂ + ikr, ir) − F (p̂, ir)

r
.

Proof. 1. The case F = p̂j is obvious.

2. In the case F = p̂α, α ∈ Z
n
+, we apply induction on |α| and use the identity

[
F1 ◦ F2, e

i〈k,x̂〉] =
[
F1, e

i〈k,x̂〉] ◦ F2 + F1 ◦
[
F2, e

i〈k,x̂〉]
=

[
F1, e

i〈k,x̂〉] ◦ F2 +
[
F2, e

i〈k,x̂〉] ◦ F1 + r ◦
[
F1,

[
F2, e

i〈k,x̂〉]],
which holds for any F1, F2 ∈ QOform.

3. In the case of arbitrary F , we use the linearity. �
If we use Φ = ei〈k,x̂〉 in Proposition 20.1, we obtain the following result.

Corollary 20.1. Suppose that a system of commuting observables F1, . . . , Fn, [Fj , Fl] = 0,
admits global angle–action variables ϕ̂ and Î:

F = F(Î , ir), Î = M(F, ir).

Suppose that the observables F1, . . . , Fn and ei〈k,ϕ̂〉 can be associated with operators on L2(Rn). Let
ψ ∈ L2(Rn) be a common eigenfunction for Fj ,

Fj · ψ = λjψ, j = 1, . . . , n.

Suppose also that ψk = ei〈k,ϕ̂〉 · ψ is defined and belongs to L2(Rn).
Then

Fj · ψk = Fj

(
M(λ, �) + �k, �

)
ψk.

Proof. Indeed, by Proposition 20.1,

Fj · ψk = (λj + �µj(λ, �))ψk ,

where the functions µj(F, ir) satisfy the equation

[
Fj , e

i〈k,ϕ̂〉] = iei〈k,ϕ̂〉 ◦ µj(F, ir).

By Proposition 20.2,

µj(F, ir) =
Fj(Î + ikr, ir) −Fj(Î , ir)

ir
=

Fj(M(F, ir) + irk, ir) − Fj

ir
.

Therefore, �µj(λ, �) = Fj(M(λ, �) + �k, �) − λj . �
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APPENDICES

A. FORMULAS

A.1. Identities for the commutator. (a) Jacobi identities:

[[F,G],H] + [[G,H], F ] + [[H,F ], G] = 0, (A.1)

[([F,G]),H] + [([G,H]), F ] + [([H,F ]), G] = 0, (A.2)

([[F,G],H]) + ([[G,H], F ]) + ([[H,F ], G]) = 0. (A.3)

(b) Leibnitz identities:

[F ◦ G,H] = F ◦ [G,H] + [F,H] ◦ G, (A.4)

[([F,G]),H] = ([F, [G,H]]) + ([G, [F,H]]). (A.5)

(c) The “bac–cab” rule:

r2[F, [G,H]] = ([([G,F ]),H]) − ([([H,F ]), G]). (A.6)

A.2. Relations ∼ and ≈.

Notation. Let n = 1. For any monomial z = π(p̂α ◦ x̂β ◦ p̂ γ), we write z
β∼ uγvα.

Similarly, for any monomial ζ = π(x̂α ◦ p̂ β ◦ x̂ γ), we write ζ
β
≈ ũγ ṽα.

If α + γ ≤ β, the monomials π(p̂α ◦ x̂β ◦ p̂ γ) and π(x̂α ◦ p̂ β ◦ x̂ γ) can be regarded as elements
of the primitive basis; however, we usually do not assume that this inequality holds.

Proposition A.1. Let n = 1. For any α, β, γ ≥ 0, let z = π(p̂α ◦ x̂β ◦ p̂ γ) and ζ =
π(x̂α ◦ p̂ β ◦ x̂ γ). Then

π(p̂ ◦ z)
β+1∼ uγvα+1, π(x̂ ◦ z)

β+1∼
(

1 +
u − v

β + 1
∂

∂v

)
uγvα, (A.7)

π(p̂ ◦ ζ)
β+1
≈

(
1 +

u − v

β + 1
∂

∂ṽ

)
ũγ ṽα, π(x̂ ◦ ζ)

β+1
≈ ũγ ṽα+1, (A.8)

π(r ◦ z)
β+1∼ v − u

β + 1
uγvα, π(r ◦ ζ)

β+1
≈ ũ − ṽ

β + 1
ũγ ṽα. (A.9)

Proof. The first relation (A.7) is obvious, while the second one follows from the identity

π(x̂ ◦ z) = π
(
p̂α ◦ x̂β+1 ◦ p̂ γ

)
+

α

β + 1
π
(
p̂α−1 ◦ x̂β+1 ◦ p̂ γ+1 − p̂α ◦ x̂β+1 ◦ p̂ γ

)
.

This identity follows from a simpler one,

(β + 1)π
(
x̂ ◦ p̂α ◦ xβ − p̂α ◦ x̂β+1

)
= απ

(
p̂α−1 ◦ x̂β+1 ◦ p̂ − p̂α ◦ x̂β+1

)
.

To verify the latter identity, it is sufficient to use the following trivial equations:

π(x̂ ◦ p̂α − p̂α ◦ x̂) = −απ(p̂α−1), π
(
x̂β+1 ◦ p̂ − p̂ ◦ x̂β+1

)
= −(β + 1)π(x̂β).

Relations (A.8) can be checked similarly, while (A.9) follow from (A.7) and (A.8). �
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A.3. Forms Σα,β. We set

Σα,β :=
∑

type z=(α,β)

π(z).

Obviously,
Aver Σα,β = Cα

α+βxαpβ. (A.10)

Proposition A.2. Suppose that n = 1. Then

Σα,β = Cβ
α+β · 2−β

β∑
j=0

Cj
β π

(
p̂ j ◦ x̂α ◦ p̂ β−j

)
. (A.11)

Corollary A.1.

Σα,β
α∼ Cβ

α+β · 2−β(u + v)β, Σα,β
β
≈ Cα

α+β · 2−α(ũ + ṽ)α. (A.12)

Proof of Proposition A.2. Equation (A.11) obviously holds if either α = 0 or β = 0. Then

Σα,β = π(x̂) ◦ Σα−1,β + π(p̂ ) ◦ Σα,β−1. (A.13)

Applying equation (A.13) several (finitely many) times, we finally express Σα,β in terms of Σαk,βk
,

k = 1, . . . ,K, where αkβk = 0 for any k = 1, . . . ,K. Hence, it is sufficient to prove (A.11) assuming
that Σα−1,β and Σα,β−1 satisfy (A.11).

Following this plan, we evaluate two terms on the right-hand side of (A.13). By Proposition A.1,

π(x̂) ◦ Σα−1,β
α∼

(
1 +

u − v

α

∂

∂v

)
Cβ

α+β−1 · 2
−β(u + v)β ,

π(p̂ ) ◦ Σα,β−1
α∼ Cβ−1

α+β−1 · 2
1−βv(u + v)β−1.

Summing up these relations, we get

π(x̂) ◦ Σα−1,β + π(p̂ ) ◦ Σα,β−1
α∼ Cβ

α+β · 2−β(u + v)β . �

A.4. The forms rl.
Proposition A.3. Suppose that n = 1. Then

l! rl =
l∑

j=0

(−1)jCj
l π

(
x̂j ◦ p̂ l ◦ x̂l−j

)
=

l∑
j=0

(−1)jCj
l π

(
p̂ l−j ◦ x̂l ◦ p̂ j

)
,

Cβ
l+β l!π(rl ◦ p̂ β) =

l∑
j=0

(−1)jCj
l π

(
x̂j ◦ p̂ β+l ◦ x̂l−j

)
,

Cα
l+α l!π(rl ◦ x̂α) =

l∑
j=0

(−1)jCj
l π

(
p̂ l−j ◦ x̂α+l ◦ p̂ j

)
.

Corollary A.2. Aver(l! rl) = (2xp)l.
Proof of Proposition A.3. Induction on l with the help of (A.9). �
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Proposition A.4. For n = 1, let F ∈ π(Fα,β). Then

F =
min{α,β}∑

j=0

fj j! rj ◦ σα−j,β−j, σk,l = (Ck
k+l)

−1Σk,l,

where the coefficients fj satisfy the estimate

|fj| ≤ 2α+β−j‖F‖.

Proof. Suppose, for definiteness, that α ≤ β. Expanding F in the primitive basis, we get

F
β
≈

α∑
k=0

qkũ
kṽα−k, ‖F‖ =

α∑
k=0

|qk|. (A.14)

By Propositions A.1 and A.2,

F
β
≈

α∑
j=0

fj · 2j−α

Cj
β

(ũ − ṽ)j(ṽ + ũ)α−j . (A.15)

Equating the polynomials on the right-hand sides of (A.14) and (A.15), we obtain the estimate

|fj| · 2j−α/Cj
β ≤ 2−αCj

α‖F‖.

It remains to apply the inequalities Cj
β ≤ 2β and Cj

α ≤ 2α. �

B. PRIMITIVE MONOMIALS

B.1. Some identities.
Proposition B.1. In the case n = 1, the following identity holds for any α, β ∈ Z+:

π
(
x̂α ◦ p̂α+β ◦ x̂β

)
= π

(
p̂ β ◦ x̂α+β ◦ p̂α

)
. (B.1)

Corollary B.1. The sets of monomials (5.3) and (5.4) coincide for µ = ν.
Proof of Proposition B.1. First, note that identity (B.1) is equivalent to[

π(x̂α ◦ p̂α), π(p̂ β ◦ x̂β)
]

= 0. (B.2)

This equation is obvious if α = 0 or β = 0. To prove (B.2) in the general case, we use induction on
α + β and the identity[

π(x̂α ◦ p̂α), π(p̂ β ◦ x̂β)
]

= π(x̂) ◦
[
π(x̂α−1 ◦ p̂α−1), π(p̂ β ◦ x̂β)

]
◦ π(p̂ )

+ βr ◦
[
π(x̂α ◦ p̂α), π(p̂ β−1 ◦ x̂β−1)

]
. (B.3)

It remains to prove (B.3). By the Leibnitz identity,[
π(x̂α ◦ p̂α), π(p̂ β ◦ x̂β)

]
=

[
π(x̂), π(p̂ β ◦ x̂β)

]
◦ π(x̂α−1 ◦ p̂α) + π(x̂) ◦

[
π(x̂α−1 ◦ p̂α), π(p̂ β ◦ x̂β)

]
= −βπ

(
p̂ β−1 ◦ x̂β+α−1 ◦ p̂α

)
+ π(x̂) ◦

[
π(x̂α−1 ◦ p̂α−1), π(p̂ β ◦ x̂β)

]
◦ π(p̂ )

+ π(x̂α ◦ p̂α−1) ◦
[
π(p̂ ), π(p̂ β ◦ x̂β)

]
= π(x̂) ◦

[
π(x̂α−1 ◦ p̂α−1), π(p̂ β ◦ x̂β)

]
◦ π(p̂ )

− βπ
(
p̂ β−1 ◦ x̂β+α−1 ◦ p̂α

)
+ βπ

(
x̂α ◦ p̂ β+α−1 ◦ x̂β−1

)
= π(x̂) ◦

[
π(x̂α−1 ◦ p̂α−1), π(p̂ β ◦ x̂β)

]
◦ π(p̂ ) + βr ◦

[
π(x̂α ◦ p̂α), π(p̂ β−1 ◦ x̂β−1)

]
. �

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 250 2005



QUANTUM OBSERVABLES: AN ALGEBRAIC ASPECT 239

B.2. Proof of Proposition 5.2. Let z ∈ π(Fα,β), 0 ≤ α ≤ β, be a monomial that does not
belong to the list (5.3). To show that it is composite, we use induction on α. First, we consider the
case when

z = π(p̂µ ◦ x̂ν ◦ p̂λ), µ, ν, λ > 0, ν < µ + λ.

If ν = 1, then z is composite due to the obvious identity

π(p̂ ◦ x̂ ◦ p̂ ) =
1
2
π
(
p̂ 2 ◦ x̂ + x̂ ◦ p̂ 2

)
. (B.4)

Suppose that the statement is true for all positive ν < ν0 < µ + λ. Consider the case ν = ν0.
We can present z in the form π(p̂ a ◦ z̃ ◦ p̂ b), a, b ≥ 0, so that z̃ = π(p̂µ0 ◦ x̂ν0 ◦ p̂λ0) with

µ0, λ0 > 0, ν0 < µ0 + λ0, and ν0 > min{µ0, λ0}.

Let, for definiteness, ν0 > µ0. Then, by (B.1),

z̃ = π
(
x̂ν0−µ0 ◦ p̂ ν0 ◦ x̂µ0 ◦ p̂λ0+µ0−ν0

)
.

By the induction hypothesis, π(p̂ ν0 ◦ x̂µ0 ◦ p̂λ0+µ0−ν0) is composite. Hence, z̃ and z are composite
too.

Now we turn to the general case. We have

z = π
(
x̂α0 ◦ p̂ β1 ◦ x̂α1 ◦ p̂ β2 ◦ x̂α2 ◦ . . . ◦ p̂ βk ◦ x̂αk ◦ p̂ βk+1 ◦ x̂αk+1

)
for some positive α1, . . . , αk, β1, . . . , βk+1, and α0 ≥ 0, αk+1 ≥ 0,

0 ≤
k∑

j=1

αj ≤
k+1∑
j=1

βj . (B.5)

It is important that k ≥ 1 (otherwise, z belongs to the list (5.3)).
Now note that at least one of the following inequalities holds:

αj < βj + βj+1, j = 1, . . . , k. (B.6)

Indeed, if k > 1 and all inequalities (B.6) fail to hold, we have a contradiction with (B.5). In the case
of k = 1, it may happen that α1 = β1 + β2. However, in this case, by (B.1), z = π(x̂β2 ◦ p̂α1 ◦ x̂β1)
is one of monomials (5.3).

Suppose that (B.6) holds for j = s. Then it is sufficient to prove that zs = π(p̂ βs ◦ x̂αs ◦ p̂ βs+1)
is composite. Hence, we have reduced the general case to the one considered above. �

B.3. Proof of Proposition 5.3. For any monomial z ∈ Fµ,ν , its projection π(z) is a linear
combination of primitive monomials. Therefore, Fµ,ν

prim generates the vector space π(Fµ,ν). In
particular, the number of elements

#Fµ,ν
prim ≥ dim π(Fµ,ν).

To prove that vectors from Fµ,ν
prim are linearly independent, we note that

#Fµ,ν
prim ≤ The number of monomials (5.5) = m1 · . . . · mn,

where mj = max{µj , νj} + 1. Hence, by (5.2),

dim π(Fµ,ν) = m1 · . . . · mn = #Fµ,ν
prim.

This implies that Fµ,ν
prim contains all monomials (5.5) and forms a basis in π(Fµ,ν). �
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C. SOME MAJORANT INEQUALITIES

In this appendix, ζ and ξ are one-dimensional complex variables.
Proposition C.1. For any 0 < a < b,

1
(1 − aζ)(1 − bζ)

� b

(b − a)(1 − bζ)
. (C.1)

Proof. The proof follows immediately from the equation

b

(b − a)(1 − bζ)
=

1
(1 − aζ)(1 − bζ)

+
a

(b − a)(1 − aζ)
. �

Proposition C.2. For any 0 < β < α,

1 − αξ −
√

(1 − αξ)2 − β2ξ2

ξ2
� β(α + β)

4(1 − (α + β)ξ)
.

Proof. We start with the equation

1 −
√

1 − ζ =
∞∑

k=1

(2k − 3)!!
(2k)!!

ζk.

Now we see that

1−αξ−
√

(1−αξ)2 −β2ξ2

ξ2
=

1−αξ

ξ2

(
1−

√
1− β2ξ2

(1−αξ)2

)
=

1−αξ

ξ2

∞∑
k=1

(2k−3)!!
(2k)!!

β2kξ2k

(1−αξ)2k

� β2

2(1 − αξ)

∞∑
k=0

β2kξ2k

(1 − αξ)2k
=

β2(1 − αξ)
2(1 − (α + β)ξ)(1 − (α − β)ξ)

� β2

2(1 − (α + β)ξ)(1 − (α − β)ξ)
.

It remains to use (C.1). �
Proposition C.3. For any k ∈ N and λ > 0,

λkζk

1 − λζ
� 1

1 − λζ
. (C.2)

Proof. The proof follows from the equation 1/(1 − λζ) = 1 + λζ + λ2ζ2 + . . . . �
Proposition C.4. For any α, k ∈ N and λ > 0,

d

dζ

ζk

(1 − λζ)α
� (k + α)

ζk−1

(1 − λζ)α+1
. (C.3)

Proof. Explicit computation yields

d

dζ

ζk

(1 − λζ)α
=

kζk−1

(1 − λζ)α
+

αλζk

(1 − λζ)α+1
� (k + α)

ζk−1

(1 − λζ)α+1
. �
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Proposition C.5. For any l ∈ Z+ and constant a, λ > 0, consider the sequence

b0 =
a0ζ

l+1

1 − λζ
, bs+1 = a

d

dζ

(
ζ2

1 − λζ

)
dbs

dζ
. (C.4)

Then

bs �
a0s! ζ l+1

1 − λζ

(
3a(l + 3)
(1 − λζ)3

)s

. (C.5)

Moreover, let

A = 3a(l + 3)
(1 + σ)2

σ2

for some σ > 0. Suppose that a = a(σ) is so small that A < 1. Then

∞∑
s=0

bs

s!
� a0ζ

l+1

1 − A − (1 + σ)λζ
. (C.6)

Proof. First, we prove (C.5) by induction. The case s = 0 is obvious. If (C.5) holds for some
s ≥ 0, we have

bs+1 = a0 s! as+1 · 3s(l + 3)s
d

dζ

(
ζ2

1 − λζ

)
d

dζ

(
ζ l+1

(1 − λζ)3s+1

)
.

Then, by (C.3),

bs+1 � a0 s! as+1 · 3s+1(l + 3)s(l + 3s + 2)
ζ l+1

(1 − λζ)3s+4
.

It remains to apply the obvious inequality l + 3s + 2 < (s + 1)(l + 3).
Now we prove (C.6). By Proposition C.1, we have

1
(1 − λζ)3

� 1
1 − (1 + σ)λζ

1
(1 − λζ)2

� (1 + σ)2

σ2

1
(1 − (1 + σ)λζ)3

.

Therefore,
∞∑

s=0

bs

s!
� a0ζ

l+1

1 − λζ

∞∑
s=0

(
A

1 − (1 + σ)λζ

)s

� a0ζ
l+1

1 − A − (1 + σ)λζ
. �

D. OPERATORS [p̂j , · ] AND THEIR RIGHT INVERSE

For j ∈ {1, . . . , n}, consider the operator [p̂j, · ] : QO → QO.
Proposition D.1. The operator [p̂j, · ] has a right inverse Ij : QO → QO,

[p̂j , Ij(·)] = idQO,

such that
Aver Ij(π(z)) � xj · xαpβ

for any monomial z ∈ Fα,β, (α, β) ∈ Z
2n
+ .

Corollary D.1. For any F ∈ QO and f ∈ CO such that F (x̂, p̂ ) � f(x, p), we have

IjF (x̂, p̂ ) � xj · f(x, p).
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Proof of Proposition D.1. It is sufficient to consider the case when z contains only multipliers
x̂j and p̂j . Hence, we can set n = 1 and (α, β) ∈ Z

2
+. We denote, for short,

x̂j = x̂, p̂j = p̂, Ij = I.

We can also assume that z ∈ Fα,β
prim.

Consider the case α ≥ β. Then, for some l ∈ {0, . . . , β}, we have z = p̂ l ◦ x̂α ◦ p̂ β−l. We set

I(π(z)) =
1

α + 1
π
(
p̂ l ◦ x̂α+1 ◦ p̂ β−l

)
.

Then the assertion of Proposition D.1 obviously holds.
The case α < β is more complicated. For some l ∈ {0, . . . , α}, we have z = x̂l ◦ p̂ β ◦ x̂α−l.

Suppose, for definiteness, that l ≥ α − l (the case l < α − l is analogous). We set

Ij(π(z)) =
1

l + 1
π(x̂l+1 ◦ p̂ β ◦ x̂α−l) − α − l

(l + 1)(l + 2)
π(x̂l+2 ◦ p̂ β ◦ x̂α−l−1)

+
(α− l)(α− l− 1)

(l + 1)(l + 2)(l + 3)
π(x̂l+3 ◦ p̂ β ◦ x̂α−l−2) − . . . +

(−1)α−l(α− l)!
(l + 1)(l + 2) . . . (α + 1)

π(x̂α+1 ◦ p̂ β).

Hence,

Aver I(π(z)) =
(

1 +
α − l

l + 2
+

(α − l)(α − l − 1)
(l + 2)(l + 3)

+ . . . +
(α − l)!

(l + 2) . . . (α + 1)

)
xα+1pβ

l + 1

� xα+1pβ. �

E. PROOF OF LEMMA 17.1

Estimate (17.3) follows from the definition of Q
(m)
j . Now let us construct a solution of (17.2).

The equations
[
p̂s + P

(m)
s , p̂l + P

(m)
l

]
= 0 imply that[

p̂s, P
(m)
l

]
−

[
p̂l, P

(m)
s

]
= −

[
P (m)

s , P
(m)
l

]
= O2m+1(x̂, p̂ ), s, l = 1, . . . , n.

Substituting P̌
(m)
j + Q

(m)
j for P

(m)
j in this equation, we obtain[

p̂s, P̌
(m)
l

]
−

[
p̂l, P̌

(m)
s

]
= O2m+1(x̂, p̂ ) = 0

because deg
[
p̂s, P̌

(m)
l

]
and deg

[
p̂l, P̌

(m)
s

]
do not exceed 2m.

We set χ(1) = I1(P̌
(m)
1 ), where the operator I1 (a right inverse to [p̂1, · ]) is defined in Appendix D.

Then [
p̂1, χ

(1)
]

= P̌
(m)
1 , χ(1) � µmξ2m+2

1 − λmξ
.

For any j = 2, . . . , n, the observable

Φ(1)
j := P̌

(m)
j −

[
p̂j, χ

(1)
]

is a polynomial that contains only terms of degrees 2m + 1, 2m + 2, . . . , 2m+1. Moreover, it does not
depend on x̂1. Indeed, [

p̂1,Φ
(1)
j

]
=

[
p̂1, P̌

(m)
j

]
−

[
p̂j, P̌

(m)
1

]
= 0.

In fact, Φ(1)
j equals the sum of all terms of P̌

(m)
j that are independent of x̂1.
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We set χ(2) = I2(Φ
(1)
2 ). Then

[
p̂2, χ

(1) + χ(2)
]

= P̌
(m)
2 , χ(2) � µmξ2m+2

1 − λmξ
,

and for any j = 3, . . . , n, the observable

Φ(2)
j := P̌

(m)
j −

[
p̂j, χ

(1) + χ(2)
]

is a polynomial that contains only terms of degrees 2m + 1, 2m + 2, . . . , 2m+1. Moreover, it does not
depend on x̂1 and x̂2. We set χ(3) = I3

(
Φ(2)

3

)
.

Continuing similarly, we define χ(4), . . . , χ(n). Finally, we set χm = χ(1) + . . . + χ(n). �

F. PROOF OF LEMMA 17.2

We have

Q
(m)
j � µmλ2m

m ξ2m+1+1

1 − λmξ
= b0,

where b0 is defined by (C.4) with

ζ = ξ, a0 = µmλ2m

m , λ = λm, l = 2m+1.

By Proposition C.3,

χm � nµmξ2m+2

1 − λmξ
� nµmλ−2m

m ξ2

1 − λmξ
.

Therefore,

[
χm, Q

(m)
j

]
�

{{
nµmλ−2m

m ξ2

1 − λmξ
,

µmλ2m

m ξ2m+1+1

1 − λmξ

}}
� 2n

d

dξ

(
nµmλ−2m

ξ2

1 − λmξ

)
db0

dξ
� b1,

where b1 is defined by (C.4) with

a = 2n2µmλ−2m

m , k = 2m. (F.1)

Similarly, [χm, [χm, Q
(m)
j ]] � b2, and so on. Hence, by Proposition C.5,

U
(m+1)
j �

∞∑
s=0

bs

s!
� µmλ2m

m ξ2m+1+1

1 − Am − (1 + σ)λmξ
.

Now we estimate V
(m+1)
j . We have

[
χm, P̌

(m)
j

]
�

{{
nµmξ2m+2

1 − λmξ
,

µmξ2m+1

1 − λmξ

}}
� 2n2µ2

m(2m + 3)(2m + 2)
ξ2m+1

(1 − λmξ)4

� 2n2µ2
m(2m + 3)2

(1 + σ)3

σ3

ξ2m+1

1 − (1 + σ)λmξ
.

(In the last estimate, we used Proposition C.1.) Therefore,
[
χm, P̌

(m)
j

]
� b0, where b0 is defined

by (C.4) with

ζ = ξ, a0 = 2n2µ2
m(2m + 3)2

(1 + σ)3

σ3
, λ = (1 + σ)λm, l = 2m+1.
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We obtain
[
χm

[
χm, P̌

(m)
j

]]
� b1, where b1 is defined by (C.4) with a as in (F.1). Repeating the

arguments, we obtain

V
(m)
j �

∞∑
s=0

bs

s!
� 2n2µ2

m(2m + 3)2
(1 + σ)3

σ3

ξ2m+1+1

1 − Am − (1 + σ)λmξ
. �
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