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1. INTRODUCTION

An important part of the legacy of V.A. Iskovskikh is his work on rationality of algebraic vari-
eties. So it makes perfect sense to dedicate to him a paper containing a discussion on the subject of
rationality from a new perspective—from the point of view of Homological Mirror Symmetry (HMS).

We begin by introducing some geometric generalizations of Homological Mirror Symmetry. We
give an idea for showing nonrationality of generic three- and four-dimensional cubics. We elaborate
the following line of thought. First, in Section 3 we study the behavior of Landau–Ginzburg models
under birational transformations (see Theorem 3.2). After that we suggest possible birational
invariants—the monodromy acting on the transcendental part of the second cohomology of a generic
fiber. This monodromy is equal to the Serre functor of the subcategory semiorthogonal to the
exceptional objects in the semiorthogonal decomposition of the derived category of a nonsemisimple
Fano variety. At the end of Section 4 we introduce a new stronger invariant—the monodromy of
the perverse sheaf of vanishing cycles associated with a Landau–Ginzburg model. We stress that
HMS should be seen more as a correspondence between superschemes and Kato stratified spaces.
We briefly justify why these monodromies constitute birational invariants and carry out a concrete
calculation in the case of a four-dimensional cubic.

Due to restrictions in time and space our discussion here is rather terse. We will refer heavily
to the papers [7] and [6]. We promise to redeem ourselves providing more details in a future paper
“Homological Mirror Symmetry, Monodromies and Cycles.”

2. GENERALIZED HMS

Mirror symmetry was introduced as a duality between two N = 2 superconformal field theories.
Historically, the first version of the HMS conjecture was formulated for Calabi–Yau manifolds.
Generalizations to symplectic manifolds with nonzero first Chern class and the role of Landau–
Ginzburg models as their mirrors appeared soon afterward, first in mathematics and then in physics.
From a mathematical point of view, these generalizations cover a variety of issues of vastly different
complexity. We briefly discuss the classical HMS formulated by Kontsevich in Table 1 referring
to [6] for more details.
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Table 1

A-models (symplectic) B-models (algebraic)

X = (X,ω): a closed symplectic manifold X: a smooth projective variety

Fukaya category Fuk(X):
objects are Lagrangian submanifolds L
(equipped with flat line bundles); morphisms
are given by the Floer cohomology HF∗(L0, L1)

Derived category Db(X):
objects are complexes of coherent sheaves E ;
morphisms are Ext∗(E0, E1)

Y : a noncompact symplectic manifold with a
proper map W : Y → C which is a symplectic
fibration with singularities

Y : a smooth quasiprojective variety with a
proper holomorphic map W : Y → C

Relative Fukaya category Fuk(W ):
objects are Lagrangian submanifolds L ⊂ Y
which, at infinity, are fibered over R

+ ⊂ C.
The morphisms are HF∗(L+

0 , L1), where the
superscript + indicates a perturbation remov-
ing intersection points at infinity

The category Db
sing(W ) of algebraic B-branes,

obtained by considering the singular fibers
Yz = W−1(z), dividing Db(Yz) by the subcat-
egory of perfect complexes Perf(Yz), and then
taking the direct sum over all such z

Table 2. HMS for Fano varieties

B side A side
(X,D) (Y, Y∞,W )

Db(D) Fuk(Y∞)

i∗i∗ i∗i∗

Db(X) FS(Y,W )
∪ ∪

Db
compact
support

(X \ D) FScompact
Lagrangians

(Y,W )

∩ ∩
Db(X \ D) Fukwrapped(Y ′)

The smooth quasiprojective variety Y with a proper holomorphic map W : Y → C is often
called a Landau–Ginzburg model or a Landau–Ginzburg mirror of X. Next we enhance HMS by
supplementing the above setup with additional categorical and geometric structures.

In Table 2 we make HMS depend on additional geometric data: a divisor D on the B side and
a modified Landau–Ginzburg mirror on the A side. The wrapped Fukaya category appearing in
Table 2 has its Lagrangians going many times around a given divisor vertical with respect to W ,
and in such a way it records an additional filtration. On the B side this corresponds to the log
mixed Hodge structure associated with X \ D. These additional geometric data and categorical
correspondences allow one in many cases to relate HMS to Hodge theory and draw geometric
conclusions (see [6]). Finally, Y∞ is a marked smooth fiber different from the fiber at infinity of the
Landau–Ginzburg model.

In the next section we employ these new settings in order to get geometric consequences.
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Table 3. Birational Geometry–HMS vocabulary

Birational Geometry Homological Mirror Symmetry

X w : Y → CP
1

Blow-up Adding a singular fiber

Blow-down Taking a singular fiber to ∞

3. APPLICATIONS TO BIRATIONAL GEOMETRY

We consider some applications to Birational Geometry. First, in Table 3 we suggest a conjectural
dictionary relating Birational Geometry and HMS. It is based on the following theorems:

Theorem 3.1 [9]. Let X be a smooth projective variety and XY be a blow-up of X in
a smooth subvariety Y of codimension k. Then Db(XY ) has a semiorthogonal decomposition
(Db(X),Db(Y )k−1, . . . ,D

b(Y )1). Here Db(Y )i are the corresponding twists by O(i).

This B-side statement has an A-model counterpart, which relates suitable noncompactified
Landau–Ginzburg mirrors LG(X), LG(Y ), and LG(XY ). In [1] the following result is discussed:

Theorem 3.2 [1]. The variety XY has a Landau–Ginzburg mirror LG(XY ) such that, for a
suitable value of a constant R > 0, the region {|W | < R} is topologically equivalent to LG(X), while
the region {|W | > R} contains k−1 clusters of critical values each of which is topologically equivalent
to a stabilization of LG(Y ). In particular, F(LG(XY )) admits a semiorthogonal decomposition
〈F(LG(X)), F(LG(Y ))k−1, . . . , F(LG(Y ))1〉.

This theorem justifies Table 3 and suggests that studying the monodromy around singular fibers
of Landau–Ginzburg models could yield this result. We proceed by exploring this idea on examples.

Our first example is a three-dimensional cubic. Applying the standard Hori–Vafa procedure, we
get the following Landau–Ginzburg mirror:

xyuvw = (u + v + w)3 · t

with potential W = x + y. Here (u : v : w) ∈ CP
2, (x, y) ∈ A

2, and t is a volume constant. The
singular set over W = 0 of the smooth compactification of this Landau–Ginzburg model looks as in
Fig. 1.

The above Landau–Ginzburg model represents a family of K3 surfaces. The fiber over W = 0
consists of six surfaces, and the monodromy around it is quasiunipotent.

Fig. 1. The singular set for the LG of a cubic threefold.
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Table 4. Monodromies and rationality of Fano threefolds

M R M R

P
4 ⊃ X4 q − P

3 u +

P
6 ⊃ Q1 ∩ Q2 ∩ Q3 q − P

5 ⊃ Q1 ∩ Q2 u +

V10 q − V5 u +

A comparison of the works of Iskovskikh [3] and Golyshev [2] implies as an immediate conse-
quence the following:

Theorem 3.3 (Golyshev–Iskovskikh). Let X be a three-dimensional Fano variety and Y → C

be its Landau–Ginzburg mirror. Suppose that there exists a singular fiber with nonisolated singular-
ities in Y → C such that the corresponding monodromy is not unipotent. Then X is not rational.1

We summarize some examples in Table 4. Here R stays for rational, M for monodromy, q for
quasiunipotent, and u for unipotent. We use standard notations from the Iskovskikh classification
of three-dimensional Fano varieties (see [3]) and X4 is a smooth three-dimensional quartic.

The Fano threefolds in Table 4 are combined horizontally in the following way. The LG model
of the one on the left is a quotient of the LG model of the one on the right. Taking these quotients
makes the monodromy of the fiber over 0 quasiunipotent and creates deeper singularities.

Table 4 gives a new approach to the celebrated Iskovskikh–Manin counterexample to the Lüroth
problem [4]—nonrationality of X4. Similar considerations and the assumption of HMS imply that
all smooth Fano threefolds V10 are nonrational. The proof of Theorem 3.3 is based on the fact that
the monodromy at the zero fiber of the Landau–Ginzburg model corresponds to the Serre functor
of the Fukaya–Seidel category of this fiber. We give a brief argument explaining the use of the Serre
functor for studying nonrationality questions at the end of Section 4.

Questions 3.1. Does a similar correspondence hold in higher dimensions?
Is it possible to have a Serre functor of a singular fiber behaving as a Serre functor of a smooth

variety and still have nonrationality?
Is it possible to have a nonunipotent monodromy and still have rationality? What other criteria

do we apply then?
We discuss an answer to these questions in the next section.

4. THE FOUR-DIMENSIONAL CUBIC

In order to study the above questions, we need to introduce a new technique—the superschemes
and sheaves of vanishing cycles associated with them.

Definition 4.1. The scheme defined as

Proj
(

C[x0, . . . , xn] ⊗
∧

C[η1
1 , . . . , η

1
k1

] ⊗ . . . ⊗
∧

C[ηm
1 , . . . , ηm

km
]
)
,

n, k1, . . . , km ∈ Z>0, is called a superscheme.
Here

∧
C[ηi

1, . . . , η
i
ki

] denotes the exterior algebra. Let us consider the following two log
schemes [5]: P = (pt, S1 × R≥0) and i : Y0 → Y/A, where Y0 is any singular fiber of the Landau–
Ginzburg model for X.

Definition 4.2. We call the stack KSS = Maps(P/A, Y/A) a Kato stratified space.
Here Y/A relates to the perverse sheaf of vanishing cycles on the Landau–Ginzburg model and

P measures the monodromy in different strata of KSS = Maps(P/A, Y/A). The Kato stratified

1Here we consider the monodromy action on the second cohomology group of the general fiber.
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Fig. 2. Singularities for the four-dimensional cubic.

space has a noncommutative mixed Hodge structure on its hypercohomology [6]. (For more details
see our forthcoming paper “Homological Mirror Symmetry, Monodromies and Cycles” and “Mirror
Symmetry and Vanishing Cycles” by Gross and Katzarkov.)

We will apply the above general definitions to a classical example. We describe the Landau–
Ginzburg model of the four-dimensional cubic. More precisely, we study the singularities of the
fiber over 0 of this Landau–Ginzburg model (they can be seen in Fig. 2). It is an elliptic surface S
with three singular fibers; all of them are of type Ẽ6.

We describe the picture of Fig. 2 algebraically following [10]. The (noncompact) Landau–
Ginzburg model for the four-dimensional cubic is{

f :=
(x1 + x2 + 1)3

x1x2y1y2
+ y1 + y2 = 0

}
⊂ Spec C

[
x1, x

−1
1 , x2, x

−1
2 , y1, y

−1
1 , y2, y

−1
2

]
.

Compactify the pencil {f + λ = 0, λ ∈ A
1} near λ = 0 in the product of projective spaces:

F sing =
{
y3
0(x1 + x2 + x3)3 + y1y2(λy0 + y1 + y2)x1x2x3 = 0

}
⊂ P(y0 : y1 : y2) × P(x1 : x2 : x3) × A(λ).

We resolve the singularities of the general fiber F sing
λ , λ �= 0. Its singularities are the union of lines

l1,λ
0 , l2,λ

0 , lλ1 , lλ2 , lλ3 , sλ
1 , sλ

2 , sλ
3 , sλ

4 , sλ
5 , sλ

6 , sλ
7 , sλ

8 , sλ
9 , sλ

10, sλ
11, sλ

12, sλ
13, sλ

14, sλ
15, sλ

16, sλ
17, sλ

18, sλ
19

in the fiber over λ, that is, on a hypersurface in P(x1 : x2 : x3) × P(y0 : y1 : y2).
These singularities are “horizontal” everywhere except for the fiber over λ = 0, where the lines

l1,0
0 , l2,0

0 , and s0
19 coincide. After blowing up these coinciding lines, we get a fourfold Y . The fiber

over λ = 0 after the blow-up is the union of the proper image of the fiber of F sing over 0 (we denote
it by E0) and the exceptional divisor E. Let S = E0∩E. All singularities of Y in the neighborhood
of S are “horizontal” (in particular, after blowing up � = l1,0

0 = l2,0
0 = s0

19 it becomes three lines
lying on E, which we denote by l1,0

0 , l2,0
0 , and s0

19); that is, there is their resolution such that the
exceptional divisor does not have any component in the fiber of Y → A

1 in the neighborhood of
λ = 0. So the singular set of the fiber of the resolution of Y over 0 is E0 ∩ E = S.

Now blow up �. It is given by

x1 + x2 + x3 = y1 = y2 = λ = 0.
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Let a = x1 + x2 + x3. Change the variables (using a instead of x3). The line � lies in two similar
local charts x1 �= 0, y0 �= 0 and x2 �= 0, y0 �= 0. Consider, for instance, the second one. That is, put
x2 = y0 = 1. Denote x1 by x for simplicity. We get the hypersurface{

a3 + x(a − x − 1)y1y2(λ + y1 + y2)
}
⊂ A(a, x, y1, y2, λ)

and need to blow up the line
{a = y1 = y2 = λ = 0}

(i.e., the axis x). We have four standard local charts in the blow-up. More particular, the blow-up
along the axis x is given by the same equation in

A(a, x, y1, y2, λ) × P(a′ : x′ : y′1 : y′2, λ
′)

intersected with{
a′y1 = ay′1, a′y2 = ay′2, a′λ = aλ′, y′1y2 = y1y

′
2, y′1λ = y1λ

′, y′2λ = y2λ
′}.

The local charts of the blow-up are a′ �= 0, y′1 �= 0, y′2 �= 0, and λ′ �= 0. In these local charts
we write a, y1, y2, and λ instead of a′, y′1, y′2, and λ′ for simplicity; actually, the equation of the
blown-up hypersurface, say, in the first local chart is obtained from the initial equation by a change
of coordinates

a �→ a, y1 �→ y1a, y2 �→ y2a, λ �→ λa

and division by a power of a. The exceptional set is given by a = 0. So we use the notation a �= 0
for this local chart and consider the equation of the blow-up described above.

The local chart a �= 0. The hypersurface is{
1 + x(a − x − 1)y1y2(λ + y1 + y2) = 0

}
⊂ A(a, x, y1, y2, λ);

it is smooth. The exceptional set is{
1 − x(x + 1)y1y2(λ + y1 + y2) = 0

}
⊂ A(a, x, y1, y2, λ).

The surface S, given by the intersection of the exceptional set with E0 = {λ = 0}, is{
1 − x(x + 1)y1y2(y1 + y2) = 0

}
⊂ A(x, y1, y2).

So it is a fibration by smooth affine curves of degree 3 over the axis x.
The local chart y1 �= 0. The hypersurface is{

a3 + x(y1a − x − 1)y2(λ + y2 + 1) = 0
}
⊂ A(a, x, y1, y2, λ).

The exceptional set is {
a3 − x(x + 1)y2(λ + y2 + 1) = 0

}
⊂ A(a, x, y1, y2, λ).

The singularities are proper transforms of s13, l1, s14, l2, and l10. The surface S is{
a3 − x(x + 1)y2(y2 + 1) = 0

}
⊂ A(a, x, y2).

So it is a fibration by smooth affine curves of degree 3 over the axis x for x �= 0,−1; the fibers over
x = 0,−1 are triple lines. Its singularities are four singular points of type A2; they are intersection
points of S with the singularities of Y .
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The local chart y2 �= 0. It is similar to the previous one.
The local chart λ �= 0. The surface S does not lie in this local chart, so we will not analyze it.
Gluing together these local charts, we get an (affine) elliptic surface with two triple lines and

three singular points lying on each of these lines (the intersections with l1, l2, l10, l20, s13, s14, s16,
and s17). The images of these lines on F sing are the points (0 : 1 : −1) × (1 : 0 : 0) × (0) and
(−1 : 1 : 0) × (1 : 0 : 0) × (0). There is the same triple line in the local chart x1 �= 0, y0 �= 0 lying
over (1 : 0 : −1) × (1 : 0 : 0) × (0). Hence S is an elliptic surface with three triple lines and three
singular points of type A2 lying on each of them.

It is easy to see that the singularities are “horizontal” now in the neighborhood of S (their lower
terms do not depend on parameters). We blow up one of them, say, s13 in the local chart y1 �= 0
for example.

We need to blow up the line
{a = x = y2 = 0}

on {
a3 + x(ay1 − x − 1)y2(λ + y2 + 1) = 0

}
.

As usual, consider local charts.
The local chart a �= 0. The hypersurface is{

a + x(ay1 − ax − 1)y2(λ + ay2 + 1) = 0
}
⊂ A(a, x, y1, y2, λ);

it is smooth. The exceptional set is the union of

Ea
1 = {a = x = 0}, Ea

2 = {a = y2 = 0}, Ea
3 = {a = λ + 1 = 0}.

The surface S, given by λ = 0, is smooth in this local chart. The intersections of exceptional divisors
with S are two lines.

The local chart x �= 0. The hypersurface is{
xa3 + (y1ax − x − 1)y2(λ + xy2 + 1) = 0

}
⊂ A(a, x, y1, y2, λ).

The exceptional set is the union of

Ex
1 = {x = y2 = 0} = Ea

2 , Ex
2 = {x = λ + 1 = 0} = Ea

3 .

All singularities are proper transforms of ones before this blow-up.
The local chart y2 �= 0. The hypersurface is{

y2a
3 + x(ay1y2 − xy2 − 1)(λ + y2 + 1) = 0

}
⊂ A(a, x, y1, y2, λ).

The exceptional set is the union of

Ey2
1 = {x = y2 = 0} = Ea

1 , Ey2
2 = {y2 = λ + 1 = 0} = Ea

3 .

All singularities are proper transforms of ones before this blow-up. There is a proper transform of
the triple fiber; it intersects the proper transform of S (i.e., the blow-up of S at a point of type A2)
at one point.

Finally, after a resolution in the neighborhood of S we get an elliptic surface over P
1 with three

fibers of type Ẽ6.
In light of [8] and [11] the results of the above calculation are not surprising at all. We have
Theorem 4.1. The singular set of the fiber over 0 of the Landau–Ginzburg model of the four-

dimensional cubic is a K3 surface.
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Table 5. Mirror Symmetry for superschemes

Superschemes Kato stratified spaces

F + z2 + η1η2 + η3η4 = 0,
where F is a general cubic polynomial

in projective variables x0, . . . , x5

Not a mirror of a supercurve

The above calculation suggests
Conjecture 4.1. The generic four-dimensional cubic is not rational.
We outline a brief explanation of the connection of rationality questions with monodromy in-

variants. This connection will assume HMS.
1. The category limDi Db

compact
support

(X \ Di) is a birational invariant.

2. According to HMS (Table 2), the category limYi FS(Yi) is a birational invariant too.
In [7] we introduce a deeper invariant—the monodromy of F , the perverse sheaf of vanishing

cycles associated with the Landau–Ginzburg model. This monodromy is recorded by the mixed
Hodge structure associated with the Kato stratified space.

3. The generalized HMS discussed in Section 2 suggests that if the monodromy of F on one
of the singular fibers with nonisolated singularities is nontrivial, it stays nontrivial for the limit
Landau–Ginzburg model and for the limit category limYi FS(Yi).

4. As Theorem 3.2 suggests, the monodromy of the limit Landau–Ginzburg model of a rational
manifold is trivial.

We return now to Conjecture 4.1. The calculation in this section shows the following:
1. The Serre functor of the Fukaya–Seidel category of the fiber at 0 is a shift by 2 for the

Landau–Ginzburg model for any four-dimensional cubic, so the Serre functor behaves as the Serre
functor of a smooth compact algebraic commutative K3 surface.

2. In the case of a generic four-dimensional cubic the monodromy of F for the limit Landau–
Ginzburg model is nontrivial. This can be seen as follows. In [7] we show a correspondence between
superschemes and Kato stratified spaces. In the case of a generic four-dimensional cubic the non-
triviality of the monodromy can be seen on the supercurve described in Table 5.

As follows from [1], the rationality implies that all Kato stratified spaces associated with the
supercurves of the four-dimensional cubic should be mirrors of usual curves.

These observations give a negative answer to the questions posed in the previous section and
give some strong validation of Conjecture 4.1. More details will appear elsewhere.
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Mat. Sb. 86 (1), 140–166 (1971) [Math. USSR, Sb. 15, 141–166 (1971)].

5. K. Kato and Ch. Nakayama, “Log Betti Cohomology, Log Étale Cohomology, and Log de Rham Cohomology of
Log Schemes over C,” Kodai Math. J. 22 (2), 161–186 (1999).

6. L. Katzarkov, M. Kontsevich, and T. Pantev, “Hodge Theoretic Aspects of Mirror Symmetry,” arXiv: 0806.0107.
7. L. Katzarkov and V. Przyjalkowski, “Generalized Homological Mirror Symmetry, Perverse Sheaves and Questions

of Rationality,” in Topology of Stratified Spaces, Berkeley, MSRI, Sept. 2008 , Ed. by F. Bogomolov, A. Libgober,
and S. Cappell (Cambridge Univ. Press, Cambridge, 2009), Math. Sci. Res. Inst. Publ. (in press).

8. C. Leung, “Geometric Aspects of Mirror Symmetry (with SYZ for Rigid CY Manifolds),” Proc. Int. Congr. Chin.
Math. 2001; arXiv:math/0204168.

9. D. O. Orlov, “Projective Bundles, Monoidal Transformations, and Derived Categories of Coherent Sheaves,” Izv.
Ross. Akad. Nauk, Ser. Mat. 56 (4), 852–862 (1992) [Russ. Acad. Sci., Izv. Math. 41 (1), 133–141 (1993)].

10. V. Przyjalkowski, “On Landau–Ginzburg Models for Fano Varieties,” Commun. Number Theory Phys. 1 (4),
713–728 (2008); arXiv: 0707.3758.

11. S. Sethi, “Supermanifolds, Rigid Manifolds and Mirror Symmetry,” Nucl. Phys. B 430, 31–50 (1994);
arXiv: hep-th/9404186.

This article was submitted by the authors in English

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 264 2009


