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Integrability and non-integrability in Hamiltonian

mechanics

V.V. Kozlov

Wagner: Allein die Welt! des Menschen Herz und Geist! M5cht'jeglicher doch was davon
erkennen.
Faust: Ja, was man so erkennen heisst!
Goethe "Faust"
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2 V. V. Kozlov

Introduction

1. In 1834 Hamilton expressed the differential equations of classical
mechanics, the Lagrange equations

Iff =f-> £:R"<?>xR"{?>-R

in the "canonical form":
. . . ' dff ' _ dH

{ l ) q — ~dp~' P~~~W'

Here ρ — dL/dq £ R" is the generalized momentum and the Hamiltonian
function // = pq- L\pq is the "total energy" of the mechanical system.
"In part he had been anticipated by the great French mathematicians: for
Poisson, in 1809, had taken the step introducing a function(1)

and expressing it in terms of qlt q2, ..., qn, and had actually derived half of
Hamilton's equations: Lagrange in 1810 had obtained a particular set of
equations (for the variation of elements) in the Hamiltonian form the
disturbing function taking the place of H. Moreover, the theory of non-linear
partial differential equations of the first-order had led to systems of ordinary
differential equations possessing this form: as was shown by Pfaff in
1814-15 and Cauchy in 1819 (completing the earlier work of Lagrange and
Monge), the equations of the characteristics of a partial differential equation

(2) / {Χχ, x2, . . ., xn, pu p2, . . ., pn) = 0,

where

Ps = -^~,

are
dxx dx2 dxn dpx dp2 dpn

~ df/dp2 ~ " " " ~ df/dpn ~~ —dfldx1 ~ —df/dx., ~ * * ' ~ ^

Hamilton's investigation was extended to the cases when the kinetic
potential contains the time, etc. by Ostragradskii in 1845-50 and by Donkin
in 1854"(Whittaker ( >

2. The problem of integration of Hamiltonian systems (not then written in
canonical form) had already been discussed in works of the brothers
Bernoulli, Clairaut, D'Alembert, Euler and, of course, Lagrange, in connection
with the application of the ideas and principles of Newton to various
problems of mechanics. Only those problems that could be solved by means

is the kinetic energy of the system.
(2)"it would be rather desirable to make a detailed critical study of the historical
development. In fact, the traditional references to the origin of the fundamental
mathematical notions in analytical dynamics are almost always incorrect" (Wintner [54]).
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of finitely many algebraic operations and "quadratures", the computation of
integrals of known functions, were regarded as "soluble" (integrable).
However, most of the actual problems of dynamics (say, the «-body
problem) turned out to be "non-integrable" (more precisely, not integrated).
Only in the simplest cases when the system had just one degree of freedom
(n = 1) or, decomposed into several independent one-dimensional systems,
did the integration turn out to be possible, due to the presence of integrals
of the type of conservation of the total energy {H = const).

3. Hamilton (in 1834) and Jacobi (in 1837) developed a general method of
integrating the equations of dynamics, based on the introduction of special
canonical coordinates.

The idea of the Hamilton-Jacobi method appears in the work of Pfaff and
Cauchy (and, even earlier, in the investigations of Lagrange and Monge) on
the theory of characteristics. The essence of this is the following: a
transformation of independent variables p, q -*• P, Q of the form

P = -§p <? = -§-; S(P, q): R-n^R

takes the canonical equations (1) to the canonical equations

with the Hamiltonian function

K(P, Q) = H(p, q)\P>Q.

If Κ does not depend on Q, then (3) can be integrated immediately: Ρ = P o ,

Q = Qo + ί-frr . Thus, the problem of integrating the canonical equations
Or PQ

(1) reduces to a search for a "generating" function S(P, q), satisfying the
non-linear Hamilton-Jacobi equation

which is a particular case of (2).
If a problem is solved by the Hamilton-Jacobi method, then the functions

Λ(Ρ» QX ···> Pn(P> q) are first integrals, which, as is easy to verify, are in
involution, that is, their Poisson brackets

>. ρ )_=Y ( 0Pi dpi 0Pi dP> \
! > - " V dQs dps dps dqs Idp$

are identically zero. This idea was developed by Bour [63] and Liouville
[71] in 1855. By means of the Hamilton-Jacobi method they proved that a
Hamiltonian equation with η degrees of freedom can be integrated if η
independent integrals in involution are known. This is essentially an
invariant statement of the Hamilton-Jacobi method. Within the framework
of this circle of ideas are works of Jacobi, Liouville, Kovalevskaya, Clebsch,
and other authors in which a number of new problems in dynamics, some of
which are very non-trivial, were solved. In later works the attention was



4 V. V. Kozlov

concentrated on the qualitative investigation of the motion of Hamiltonian
systems that can be solved by the Hamilton-Jacobi method, first of all by
the method of separation of the variables. In scientific usage the "action-
angle" variables, specifically for integrable systems, made their appearance.
These "were introduced by Delauney (see [66]) for the discussion of
astronomical perturbations. Later, they were found to be admirably suited
to the older form of quantum mechanics, for the Bohr-Sommerfeld
quantization consisted in making each action-variable an integral multiple of
Planck's constant" (Synge [52]). Initially conditions for quantization were
stated for systems with separated variables [11], but it gradually became
clear that in the most general case the compatible levels of a complete set of
integrals in involution, in the compact case, are homeomorphic to many-
dimensional tori, that the motion in them in the corresponding "angle"
variables is conditionally periodic, and that the "action" variables are the

integrals -—- £ ρ dq over independent cycles, covering the tori in various ways

(see, for example, [57], [54]; there are modern accounts in the books [7],
[16]). Systems with a complete set of integrals in involution are now called
completely integrable.

4. On the other hand, the efforts of Clairaut, Lagrange, Poisson, Laplace,
and Gauss, directed towards an approximate solution of applied problems of
celestial mechanics, lead ultimately to the creation of perturbation theory.
It was proposed to search for solutions of the equations of motion in the
form of series in powers of a small parameter (for example, in the solar system
such a parameter is the ratio of the mass of Jupiter to the mass of the Sun).
Afterwards Delauney, Hilden and Lindstedt modified perturbation theory by
using the Hamilton-Jacobi method. Let Η = //0+

 e # i + e2H2+ ... (e < 1) and
suppose that the "unperturbed" problem with the Hamiltonian Ho is
integrable. One then looks for a generating function S in the form of a
series S0+eS1+ ... satisfying the equation

(4) H

where the functions K, are for the present unknown. The functions So and
Ko, by the assumptions, can be found from (4) with e = 0. The Kf and St,
i > 1, are found consecutively: the resulting arbitrariness in their definition
can be removed by a condition on the absence of so-called "secular" terms.

Thus, the perturbed problem can be regarded as "solved" if the series of
perturbation theory are well-defined and convergent. Their convergence
would lead to a number of important consequences (in particular, the
eternal stability of the solar system). To anticipate, we mention a
disappointing result due to Poincare: in general, because of the presence of
the so-called small divisors, the series of perturbation theory diverge.
Moreover, the series of an improved perturbation theory proposed by
Poincare and Bolinom, in which solutions are expanded in power series in
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y/e not e, also diverge. We note that if the series of perturbation theory do
converge then the equations of motion have a complete set of integrals in
involution, which can be expressed as convergent power series in e (or y/e).

Subsequently Whittaker, Cherry, and Birkhoff later (in 1916-1927)
obtained similar results for Hamiltonian systems in neighbourhoods of
equilibrium positions and periodic trajectories. They showed that, in general,
there is a canonical transformation specified by a formal power series, after
which the Hamiltonian equations integrate simply. Hamiltonian systems with
convergent Birkhoff transformations are sometimes called "integrable in the
sense of Birkhoff. In this case also there is a complete set of independent
commuting integrals of special form.

5. As we see, each new generation interprets in its own way the essence of
the problem of integration of Hamiltonian systems. However, a common
feature of the diverse approaches to this problem is the presence in
Hamiltonian systems of independent integrals—"conservation laws".
Unfortunately, in a typical situation, integrals not only cannot be found,
but do not exist at all, since the trajectories of Hamiltonian systems,
generally speaking, do not lie on integral manifolds of a small number of
dimensions.

The first rigorous results on non-integrability of Hamiltonian systems are
due to Poincare. In [47] (1890) he proved the non-existence of analytic
integrals that can be represented in the form of convergent power series in a
small parameter. Hence, in particular, there follows the divergence of the
series of the various versions of perturbation theory. Poincare also
mentioned qualitative phenomena in the behaviour of phase trajectories that
prevent the appearance of new integrals. Among them are the creation of
isolated periodic solutions and the bifurcation of asymptotic surfaces.
Poincare applied his general method to varous versions of the «-body
problem. It turned out that, apart from the known classical conservation
laws, the equations of motion do not have new analytic integrals relative to
the masses of the planets. The non-integrability of the «-body problem for
fixed values of their masses has not yet been proved/1^

Even earlier, in 1887, Bruns proved the absence of new algebraic integrals
in the three-body problem (for all values of the point masses). Afterwards
similar results were obtained by Husson (1906) and other authors in the
dynamics of a rigid body with a fixed point. We can, however, agree with

e we must make two reservations. Firstly, the investigations of Alekseev on final
motions in the three-body problem imply the non-integrability of the restricted three-
body problem when two of the masses are equal [1]. Secondly, the question is of
integrals on the whole phase space of the problem. A complete set of integrals always
exists locally and, consequently, may exist in larger domains, where the motion is not
recurrent. Apparently, an example is the domain of positive energy in the many-body
problem (a conjecture of Alekseev).
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Wintner ([54], §129), that these "elegant negative results do not have any
dynamical significance" in view of their non-invariance under changes of
variables.

The truth is that in practically all integrated problems the first integrals
turn out to be either rational functions or simply polynomials. Also,
solutions, as functions of complex time, often turn out to be meromorphic.
As examples we can quote Jacobi's problem on the motion of a point on a
triaxial ellipsoid, Kovalevskaya's spinning top and Clebsch's case of the
motion of a rigid body in an ideal fluid. In addition, the investigations of
Kovalevskaya and Lyapunov on the classical problem of the rotation of a
heavy top showed that the general solution of the equations of motion are
single-valued functions of time only when there is an additional polynomial
integral. In this connection there arose the interesting problem of the
relation between the existence of single-valued holomorphic integrals and
branching of solutions in the complex time plane. Its formulation dates
back to Painleve.

In 1941-1954 Siegel investigated the question of integrability of
Hamiltonian systems close to stable positions of equilibrium. He proved
that in a typical situation the Hamiltonian equations do not have a complete
set of analytic integrals and the Birkhoff transformation diverges. Siegel's
proof of the divergence of the Birkhoff transformation dates back in
principle to the investigations of Poincare: it is based on a careful analysis
of the families of non-degenerate long-periodic solutions.

After the work of Poincare it became clear in the 20-th century that the
impossibility of extending local integrals to integrals "in the large" is
connected with the complex behaviour of phase trajectories on the level sets
of those integrals (not unlike the energy integral), which are known but are
not present in sufficient numbers. To put it simply, on an integral level
there must exist trajectories that are everywhere dense in some domain in it
(see the discussion of these problems, for example, in [52] and [54]).
Levi-Civita had proposed to call m-imprimitive systems having m but not
m+ 1 integrals "in the large". A direct application of the idea of complex
behaviour of phase trajectories to the problem of integrability can be found
in the above papers of Alekseev.

6. Recently some of the possibilities of the Poincare method have been
realized, which make it possible to prove non-integrability of a number of
important problems of Hamiltonian mechanics, and also to find new
phenomena of a qualitative nature that obstruct integrability. As a result an
independent part of the theory of Hamiltonian systems has taken shape. In
this paper the author wishes to continue the tradition of a "fairly popular
account of the proofs of its basic result", of which Alekseev wrote in the
preface to (the Russian translation of) Moser's book [41].
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In working on this article the author was helped by numerous conversations
with Ya.B. Tatarinov and S.V. Bolotin. In addition, the former read the
manuscript and made a number of useful remarks. The author expresses his
sincere thanks to them.

CHAPTER I

HAMILTONIAN SYSTEMS

There are various approaches to an exposition of Hamiltonian mechanics.
They can be found in the books [3], [7], [55], and [61 ]. In this chapter
we recall the definitions of the fundamental objects of Hamiltonian
mechanics, and also we consider several concrete Hamiltonian systems, which
in what follows we shall use repeatedly as examples.

§ 1 . Hamilton's equations

1. Let Μ be an even-dimensional manifold. The set of all infinitely
differentiable functions /:Μ -*• R is denoted by C°°(M). A symplectic
(canonical) structure Σ on Μ is a bilinear map
with the following properties:

1) {/. g} = — {£> /} (skew-symmetry),

2) {fg, h) = }{g, h) + g{f, h) (Leibniz' rule),

3) {{/, g), h} + {{g, h), /} + {{h, /}, g) = 0 (the Jacobi identity),
4) if m €Ξ Μ is not a critical point for a function /, then there is a smooth

function g such that {/, g}(m) Φ 0 (non-degeneracy)/1^
The pair (Μ, Σ) is called a symplectic (canonical) manifold. The function

{/, g} is called the Poisson bracket of/and g. It makes the linear space
C°°(M) into an infinite-dimensional Lie algebra over R. Its centre consists
solely of the constant functions.

Theorem (Darboux). In a small neighbourhood of any point of Μ there are
local coordinates χλ, ..., xn; yx, ..., yn (In — dim M) such that

ft fT\=V IJLH 2LlL.\
V' *,j ZJ \ dxi dyi din dxi I ·

The coordinates χ and y are called symplectic (canonical). A proof of
Darboux's theorem can be found in [7] or [51].

2. Let H:M ->· R be a smooth function. A Hamiltonian system on (71/, Σ)
with Hamiltonian Η is the name for the differential equation

(1.1) F = {F* H)

idea of an axiomatic definition of the bracket goes back apparently to Dirac [15].
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A solution of it is a smooth map m: Δ -»• Μ (Δ is an interval on R) such that

In the symplectic coordinates x, y (1.1) is equivalent to the In canonical
Hamiltonian equations:

xt = {*,. #}=-fp i, = {tfP }̂

These equations can be written in more compact form if we introduce the
skew-symmetric matrix

° E

— Ε 0

where Ε is the η χ η unit matrix. If (x, y) — z, then

Μ is called the state space, or phase space, of (1.1), and (dim M)\1 is the
number of its degrees of freedom.

3. A diffeomorphism φ:Μ -» Μ is called canonical if it preserves the Poisson
bracket: {/, g} (m) = {/, g} {φηϊ). Of course, the canonical diffeomorphisms
of a symplectic manifold (Μ, Σ)form a group/1) The phase flow g*H of any
Hamiltonian system on Μ is a one-parameter subgroup of canonical
diffeomorphism s of M.

In local symplectic coordinates the canonical condition for ψ: χ, y -> Χ, Υ
may be expressed by either of the two following equivalent conditions:

1) for each closed contour γ

§ydz=§YdX ( = §Y(x, y)dX(x, y)) ,
y r ν

where Γ is the image of γ under φ.
2) 7*3/ = 3, where / is the Jacobian matrix of φ.
In the new coordinates (X, Y) — Z, (1.2) again has Hamiltonian form

• _ c dK(Z)
^ ~Έζ '

where K(Z) = H(z).
A symplectic structure on Μ can be specified by a symplectic atlas: a set

of mutually compatible charts, where the transition from chart to chart is a
smooth canonical map. For example, let Μ = Τ*Ν be the cotangent bundle
of a smooth manifold N. A symplectic structure on T*N is specified by a
collection of local coordinates x, y, where χ are local coordinates on Ν and
y are the components of linear differential forms from T£N in the basis dx.

^"...whenever you have to do with a structure endowed entity Σ, try to determine its
group of automorphisms... You can expect to gain deep insight into the constitution of
Σ in this way." (Weyl "Symmetry".)
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It is helpful to study canonical diffeomorphisms by the apparatus of
generating functions. For example, let det II dX/dx II Φ 0. In this case we
can solve (at least locally) the equation X — X{x, y) for χ and regard X and
y as "independent" coordinates. Then χ — x(X, y), Υ = Υ(Χ, y). If we put

S= { xdy + YdX
Xo< vo

(the value of the integral is independent of the path of integration), then

_ d S V — d S

dy dX

Then S(X, y) is called a generating function of the canonical map φ. If, for
example, φ is the identity map, then S = Xy.

4. Suppose that the smooth functions Η and F commute (are "in
involution"): {H, F} = 0. Then F is a first integral of the canonical system
with Hamiltonian Η and vice versa. The phase flows g\i and gs

F of these
systems also commute on M.

Since
{{F, G}, H) = {{F, H), G) - {{G, H), F),

the integrals of any Hamiltonian system form a subalgebra of the Lie algebra
of all smooth functions on Μ (Poisson's theorem).

5. A natural mechanical system is a triple (Ν, Τ, V), where JV is a smooth
manifold (the state space), Γ is a Riemannian metric on ./V (the kinetic
energy), and V is a smooth function on ,/V (the potential of a force field).
The motions of this system are smooth maps q{t): R -*• Ν that are extremals
of the action functional:

<2

f L('q(t), q(t))dt,
h

where q(t) is the tangent vector to ./V at q(t), L — T+ V is the Lagrangian.
A time change of the local coordinates q on Ν is described by the Euler-
Lagrange equation:

d dL_ dL

ΊΓ 5 · - d q -
We consider the natural map 77V -*• T*N generated by the Riemannian

metric: (q, q) ->· (q, p), where
dT

dq

Obviously, ρ is a linear form on TqN. Since the quadratic form Τ is positive
definite, the linear map q -*• ρ is an isomorphism of the linear spaces TqN
and T*N.

We consider the total energy of the system, H: T*N -*• R, which is defined
by the formula

H{p, q) = p'q-TA-=^-q-T-V=T-V\p,q.
y~v dq
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Theorem (Poisson-Hamilton). The functions p(t) and q(t) satisfy the
canonical equations

OH dll

A similar construction is valid for the more general "seminatural" systems,
when the Lagrangian function contains additional terms that are linear in the
velocities.

It is often necessary to consider non-autonomous Hamiltonian systems
when the Hamiltonian explicitly depends on time.

§2. The motion of a rigid body

1. In many problems of mechanics the rotation of a rigid body in three-
dimensional Euclidean space can be described by equations of the following
form:

(2.1) I = .tfXa-l-(Xii, e = eXa,

where ω = dH/dM, u = dH/de, and H(M, e) is a known function on
R6 = R3{.l/}x R3{e}. The vectors ω and Μ are called the angular velocity
and the kinetic momentum of the body. The physical meaning of e and u
depend on the concrete statement of the problem.

For example, let us consider the rotation of a heavy rigid body with a
fixed point. In this case e is a vertical unit vector and u = er is the product
of the weight of the body by the radius vector of the centre of mass. The
function H, the total energy, has the following form:

•1<Λ7, /-W)-t-e(r, e),

where J~l is a positive definite self-adjoint operator. The equations (2.1) are
usually written on the following form:

• ·
7ω = /ω χ ω-\- ee χ r, e = exa).

These are called the Euler-Poisson equations ([3], [ 14]). Since / is self-
adjoint, in some orthogonal frame ξΐ5 ξ2, £3 connected with the body its
matrix (also denoted by J) can be brought to diagonal form:
/ = diag(7lt J2, J3). The eigendirections of J are called the axes of inertia
and the eigenvalues, the numbers Ju J2, J3, the principal moments of inertia
of the body. This problem contains six parameters Jx, J2, J3, and erx, er2,
er3 (rs are the coordinates of the centre of mass relative to the axes of
inertia).

In the problem of the motion of a rigid body in an infinite ideal liquid, Η
is a positive definite quadratic form

{AM, M)I2 + (BM, e) + (Ce, e)/2.

The vectors e and u are usually called the impulsive force and the impulsive
momentum and the equations (2.1) are named after Kirchhoff. The
matrices A, B, and C are symmetric: without loss of generality we may
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assume that A = diag(a1; a2, a3). Thus, in the general case the quadratic
form Η contains 15 parameters. If the rigid body has three mutually
perpendicular planes of symmetry (say, a triaxial ellipsoid), then Β = 0 and
C = diag(cu c2, c3).

2. The equations (2.1) have three integrals: F^ = H, F2 = (M, e), and
F3 = (e, e >. In the problem of the rotation of a rigid body around a fixed
point F3 = 1, obviously. The integral levels I23 = {F2 = f2, F3 — / 3 > Olc R6

are diffeomorphic to the (co)tangent bundle of the two-dimensional sphere.
We define in R6{M, e} the bracket {, } by putting

(2.2) {My, M2} = - M3l . . ., {Mu ex) = 0, {M,, e2} = -e3,
{Mi, e3) = e2, . . ., {eu e}) = 0.

Taking" the operation {, } to be bilinear, skew-symmetric and satisfying
Leibniz' rule we can compute the "Poisson bracket" of any two smooth
functions on R6 by using (2.2). The bracket (2.2) satisfies the Jacobi
identity. The equations (2.1) can be expressed in the following Hamiltonian form:

Ma = {M,,H), ea = {e,, H}

However, the bracket {, } thus defined is degenerate: any smooth
function commutes with the integrals F2 and F 3 . This circumstance permits
us to restrict the bracket {, } to the integral levels I23. Let χ e I23 and let /
and g be smooth functions on I23. We extend them to smooth functions F
and G on the whole of Re{M, e) and put

This is well-defined (independent of the method of extension) and the
bracket {, }* is non-degenerate and gives a symplectic structure on I23.

Theorem 1. The equations (2.1) on I23 can be expressed in the form of a
Hamiltonian equation f — {/, h}%, where h is the restriction of Η to I23 [45].

This construction looks particularly simple when f2 = 0. We put
Μ = ρ χ e. If/3 > 0 and f2 = (M, e) = 0, then the vector ρ exists and is
unique up to a shift along e. Let K(p, e) — H(p χ e, e).

Theorem 2 [33]. The functions p(t) and e(t) satisfy the canonical equations
• dK · _ dK

de ' dp

In R6{p, e) there is a "standard" symplectic structure, generated by the
Poisson bracket: {pit pj} = 0, {e;, ej} = 0, {pt, ej} = δ,·,· (1 < i, j < 3). In
this structure (2.2) holds for the Poisson brackets of Mir e;·. The vectors e, p,
and Μ have a simple interpretation: e is the radius vector of a point in three-
dimensional space, ρ is its momentum and Μ is its kinetic momentum (taken
with the opposite sign). We emphasize that the coordinates (eu e2, e3) = e are
"surplus". When f2 Φ 0, the change of variables Μ = ρ χ e must be
somewhat "rectified".
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Proof of Theorem 2. We first calculate
dK dH dM

dp dM dp
• e Χ ω.

Since Μ = ρ χ e,

M = p X e + p X e = — η£- X e + ρ X (e X ω),

dK_dH OH OM ,

-ΊΓ—βΓ+ dM de - " + ωΧΡ·
Hence,

Μ=— uXe + ex(o)X,p) + pX(eXcu) = MXcu + eXu.

As required.

3. On / 2 3 we introduce special canonical coordinates L, G; /, g mod 2π
(Fig. 1), which are convenient in what follows. For simplicity we restrict
ourselves to the case when/2 = 0. In R3{e) we consider the sphere
(e, e) — f3 > 0. We introduce the node line, the intersection of the planes
passing through e = 0 and perpendicular to the vectors Μ and £3. Let / and
g be the angles between ^ and %y and between %y and e {%y is the "direction"
vector of the node line).

Fig. 1 Fig. 2

We put, finally, L = (M, £3> and G = \M\. The Hamiltonian K:I23 -+ R can
be expressed as a function of L, G, I, and g that is 27r-periodic in / and g.

Theorem 3 [ 6 2 ] . The functions L, G, I, and g\t satisfy the canonical

equations
dK

w
dK
dL '

G= —
dK
dg '

a —
dK
dG

We omit the proof of this theorem, which is based on simple formulae of
vector analysis.

Let e = S e i l j . Then

l — cos I cosg — -ΤΓ sin Ζ s ing, e2/V~h = sin I cos g +-pr cos I sin g,

When f2 Φ 0, this formula becomes somewhat complicated (details can be
found in [32]).
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4. The case when the total energy reduces to a quadratic form (M, J~lM)l2
is called the Euler problem. It is realized, for example, in the rotation of a
heavy rigid body around a fixed point, when the centre of mass coincides
with the point of suspension. Let ωι, ω 2 , ω 3 be the projections of the
angular velocity ω onto the eigendirections of /. Then

Jia>l = y~Gi—L2 sin Ι, / 2 ω 2 = V G2 — L2cos

Consequently,

(2.3, «=

The Hamiltonian of the Euler problem has the same form even for non-
zero values of/2. Since G is a first integral, integration of the equations of
motion reduces to the solution of the one-dimensional Hamiltonian system
with the Hamiltonian function (2.3), in which the variable G = Go is a
parameter. The phase portrait of this system is illustrated in Fig. 2 (under
the assumption that JX<J2< J3). The phase trajectories are contained in
the ring C = {L, l:\L\<G0, I mod 2π). This ring can be regarded as a
cross-section of the three-dimensional level sets of the integral of the
modulus of the angular momentum, {G — G0}a /.,3, by the plane g = 0.
Since g Φ 0 for G Φ 0, any trajectory intersects C. Thus, there arises a
natural map of C onto itself. It preserves the area element dLdl and rotates
the boundaries of the ring in opposite directions. To the fixed points of
this map here correspond the periodic solutions, the constant rotations of
the rigid body around the axes of interia. The rotations around the middle
axis (with moment of inertia J2) are unstable.

§3. The oscillations of a pendulum

1. Suppose that the point of suspension of a mathematical pendulum of
length / performs an oscillation with the periodic law e£(O, e = const. If χ
is the angle of deviation of the pendulum from the vertical, then the kinetic
energy is . ,

Γ=-γ = γ (l2x2 + εψ + 2zlxl sin x).

Let g be the acceleration of free fall. Then the potential energy of the
pendulum is

U = — g(l cos χ + εξ(ί))·

The Lagrange equation

d dL _dL T T TT

dt 9χ dx

has the following form:

(3.1) "χ + ω2 (1 + ε/ (f)) sin χ = 0,

where ω 2 = g/l and / = ξ/g is a periodic function of time.
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This equation, of course, is Hamiltonian: the canonical coordinates are
χ mod 2π, ρ = χ, and the Hamiltonian function is

(3.2) H=-^--^(l + ef)cosx.

The state space is the circle S1{x mod 2π}, and the phase space is the
cylinder S1 χ R{/>}.

For e = 0 we have an integrable problem with one degree of freedom (a
mathematical pendulum of constant length).

2. In many problems of mechanics there occur equations resembling (3.1).
Let us consider, for example, the planar oscillations of a satellite in an
elliptical orbit. The equation of oscillations can be expressed in the
following form:

(3.3) (1 + e cos v) - — — 2e sin ν ——i- μ sin δ = 4e sin v.

Here e is the eccentricity of the orbit and μ is a parameter characterizing the
mass distribution of the satellite. The meaning of the variables δ and ν is
clear from Fig. 3.

This equation can be expressed in Hamiltonian form (Burov):

dp _ OH 6>δ _ dH

dv ΰδ ' civ dp

For satellite motion in almost circular orbits (e < 1) the equation (3.3) is
close to the equation of oscillations of an ordinary pendulum.

§4. The restricted three-body problem

Suppose that the Sun if and Jupiter f rotate around a common centre of
mass with circular orbits. The units of length, time, and mass are taken so
that the angular velocity of rotation, the sum of the masses of <5" and f, and
also the gravitational constant are 1. It is easy to see that then the distance
off is also 1.

The equations of motion of an asteroid J i n a moving system of
coordinates can be described in the form of two equations

(4.1) z_2t, = — , y + 2x = — ,
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where V = (x2 + y2)/2 + (l -μ)/Ρι + μ/β2, Μ is the mass of Jupiter, and px and
p2 are the distances from Jb to of and f. The equations (4.1) have the
integral

H=-- x'Jy2 —V(x, y),

the so-called Jacobi integral. These equations can be expressed in canonical
form: the Hamiltonian function Η is the total energy of the asteroid.

It is well known that (4.1) has five positions of equilibrium L1 — L5, the so-
called libration points. The equilibrium positions Ly-L3 on the line from the
Sun to Jupiter were discovered by Euler. They are always unstable. The
remaining two positions of equilibrium L4 and Ls (which were discovered by
Lagrange) complement the points £P and f to the vertices of equilateral
triangles. The equilibrium positions L4 and Ls are stable in the linear
approximation if μ(1 - μ) < 1/27. The problem of their Lyapunov stability
turned out to be considerably more complicated. By means of a theorem of
Kolmogorov on the preservation of conditionally periodic motions, various
authors have shown that the triangles of libration points are stable for all μ
(satisfying the stability condition in linear approximation), except for two
values μ! = 0.0242938... and μ2 = 0.013560... If μ = μ! or μ2, then the
frequences of linear oscillations are in resonance 1 :2 or 1:3. Markeev has
proved the Lyapunov instability of the triangles of libration points for these
exceptional values of the parameter [37].

§5. Some problems of mathematical physics

1. From hydromechanics it is known [36] that the motion of η point
(cylindrical) vortices in the plane (in space) can be described by the
following system of 2« differential equations:

Γ " — — JIE. Γ ' — —

(5.1)
= ΊΓ Σ Γ » Γ " 1 ο * ((*· -x*)2Jr (Us - yk)

2).
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Here (xs, ys) are the Cartesian coordinates of the s-th vortex with intensity
r s. It is assumed that all the Γ, are non-zero. The equations (5.1) are
canonical: a symplectic structure in R2"{x, y} is given by the Poisson bracket

ΎΪ7, I ·dys dxs dxs
s

In addition to the Hamiltonian Η they have another three independent
integrals:

P - V r r ρ - V r B ,1/ — L y r da-L w·-)

It is easy to verify that

in ρ \ _.- V r -rnnQt (P i\J\— Ρ IP \f\~P
\ L χι IJI ~ ~ / A }i L U i l u l ) \ * X ' / Ϊ/' I 'f ~ f x '

If the sum of the intensities of the system of vortices is zero, then Px and Py

commute.

2. Kontopoulos in his paper [64] on galactic models considered some
Hamiltonian systems in neighbourhoods of positions of equilibrium that
admit resonance relations between frequences. The simplest such system
with the Hamiltonian

was investigated in detail by Henon and Heiles by means of numerical
calculations [69]. In this problem the frequences of small oscillations are
equal to each other. In Gustavson's paper [68] there is an interesting
discussion of the numerical results of Henon-Heiles in connection with the
construction of formal integrals of Hamiltonian systems.

3. The study of homogeneous two-component models of the Yang-Mills
equations is connected with the investigation of the Hamiltonian system
with the Hamiltonian

(see [16], [17]).

CHAPTER II

INTEGRATION OF HAMILTONIAN SYSTEMS

Differential equations, including Hamiltonian equations, are usually
divided into the integrable and the non-integrable. "When, however, one
attempts to formulate a precise definition of integrability, many possibilities
appear, each with a certain intrinsic theoretic interest." ( 1 ) In this chapter
we give a brief list of the various approaches to integrability of Hamiltonian
systems, "not forgetting the dictum of Poincare, that a system of differential
equations is only more or less integrable"/1^

'. Birkhoff "Dynamical systems".
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§ 1. Quadratures

1. Integration by quadratures is the search for solutions by "algebraic"
operations (including the inverting of functions) and "quadratures", the
calculation of the integrals of known functions. This definition of
integrability formally has a local character. The solution by quadratures of
a differential equation on a manifold means its integration in any local
coordinates. We assume that the transition from one system of local
coordinates to another is an "algebraic" operation. The following result
connects the integration by quadratures of Hamiltonian systems with the
existence of a sufficiently large set of first integrals.

Theorem 1. Let Μ be a symplectic manifold. Suppose that the system with
the Hamiltonian H:M χ R -> R has η = dim M/2 first integrals Flt ..., Fn:
M x R ^ R (F't+ {F, Hj = 0) such that{F,. F •) = 2 $}Fk, c% = const. //

1) on the set Mf = {(x, t) e Μ χ R :Ft(x, t) = fh 1 < i < n) the functions
Fx, ..., Fn are independent,

2) 2 4/,, =0foralli,j = 1, ..., n,
3) the Lie algebra VI of linear combinations ^]lsFs, Xs G R, is soluble,

then the solutions of the Hamiltonian system that lie on Mf can be found by
quadratures [30].

Corollary. If a Hamiltonian system with η degrees of freedom has η
independent integrals in involution (the algebra ?I is commutative), then it
can be integrated by quadratures.

This result was first proved by Bour for automonous canonical equations
[63] and later was generalised by Liouville to the non-autonomous case
[71 ]. Suppose that Η and Fx, ..., Fn do not depend on time. Then Η is
also a first integral, for example, Η = Fx. The theorem on integrability by
quadratures still holds, of course, in that case (the condition {H, Ft} = 0
can be replaced by the weaker condition {H, F,} = λ,//, λ,· = const;
1 < / < η).

The proof of Theorem 1 is based on a lemma due to Lie.

Lemma. Suppose that η vector fields Xh ..., Xn are linearly independent in
a small domain U C W{x) and generate a soluble Lie algebra under the
commutation operation, and that [Xh X{] = λ,·^. Then the differential
equation χ = Χλ(χ) is integrable by quadratures in U (see [58], [60]).

We prove this result in the very simple case η — 2. In the general case
the proof is similar.

The equation χ — X\(x), χ £ U, can be integrated if we can find a first
integral F(x) such that F'(x) Φ 0 in U. We remark that by the straightening-
out theorem such a function obviously exists (at least locally). If X^F = 0,
then X2F is again an integral, since XX(X2F) = X2(X1F) + \2X1F = 0.
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Obviously, X2F = /(F), where f(y) is a smooth function, /Φ0. We put

0

Since ZjG = 0 and X2G = G'X2F = X2F/f(F) = 1, a solution of the system
of equations

v r, dF . OF r,

IT Τ"· ' '/'' , OF A

X2F = a21 — + a 2 2 — - 1
exists. Calculating F'Xl and F'Xl we find F by an additional integration. Since
X2F = 1, we see that F' Φ 0, as required.

To prove Theorem 1 (in the autonomous case) we consider the η
Hamiltonian vector fields 3/^. By the conditions 1 and 2, they are tangent
to Mf = {x :Fi(x) = fi, 1 < ? ' < « } and are independent everywhere on Mf.
Since {Fh Fs) = 2>?A. obviously, \^F'U 3F'}) = 3{Ft, Fj}' = Σ c1$Fi.
Consequently, the tangent vector fields 3/ '̂ form a soluble algebra, and
[ 3 ^ ' , 3FH = λβΗ'. Theorem 1 now follows from Lie's lemma.

The non-autonomous case can be reduced to the autonomous one by the
following general construction. The Hamiltonian equations

• dH (x, y, t) ; OH (x, y, t)
X— dy ' V- Tx

can be expressed in the form of a canonical system in an extended space of
variables x, y, h, t with the Hamiltonian K(x, y, h, t) = H(x, y, t) — h:

• _ dK · __ dK : _ OK · βκ
χ—~θϊ> y - ~ - t e ' h-~w> l ~ oh-

If we denote by {, }* the Poisson bracket in the extended symplectic space
R2"{x, y) χ R2{i, h) then

{Ft(x, y, t), Fj(x, y, t)U = {Fit FJ} = ^c^iFh,

{F,(x, y, t), K(x, y, h, t)}, = {Ft, H-h)^ = ̂ - + {Fi, H} = 0.

It remains to observe that the functions Fv ..., Fn and Κ are independent.

2. As a simple example we consider the problem on the motion on a line of
three points with an attracting force inversely proportional to the cube of
the distances between them. Let mt be the masses, xt the coordinates, and
Pi — rriiXi the moment of the points. The potential energy of interactions is

1 7 = Σ Ι ί ϊ ^ Γ · «υ = const.

The functions Fx = ̂ ip\l2ml + U, F2 = %ptxt and F 3 = ̂ P i are
independent and {Flt F3} = 0, {/̂ , F3} = - F3, {Flt F2} = 2F\. Since the
corresponding Lie algebra 21 is soluble, the motions on the zero levels of the
total energy and the momentum can be found by quadratures. This
possibility is not hard to realize directly. We note that in the case of equal
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masses mf and coefficients α,γ (/ < /') we can find a complete set of integrals
in involution.

3. Let Μ be a symplectic manifold and Fh ..., Fn independent functions on
Μ generating a finite-dimensional subalgebra of the Lie algebra C°°(M) (that
is, {Fu Fj} = y,cljFh, & = const). At each point χ G Μ the vectors 2 λ ;3^ί>
λ,· G R, form an «-dimensional linear subspace U(X) of TXM. The distribution
of the planes U(X) is "involutive" (if Χ, Υ G Π, then [X, Y] G Π).
Consequently, by Frobenius' theorem, through each point χ G Μ there
passes a maximal integral manifold Nx of Π. The manifolds Nx can be
embedded in Μ in a very complicated way; in particular, they need not be
closed. If η = dim M/2, then among the integral manifolds of Π there are
closed surfaces Mf = {x 6 Μ : Ft(x) = /,·, 2c^fh = 0}. If χ G Mf, then Λ^ is
a connected component of Mf. In the special case when Fh ..., Fn commute
pairwise Μ is foliated into the closed manifolds Mf.

§2. Complete integrability

Theorem 1. Let Fh ..., Fn :M -*• R be smooth functions in involution:
{Ft, Fj} = 0 (1 < i, j < ri) and dim Μ = In. If

1) they are independent on Mf,
2) the fields 3F'i (1 < i < n) are unconstrained on Mf,

then
1) each connected component of Mf is diffeomorphic to Rfc χ T"~k (T1

is a circle),
2) on Rk χ T"~k there are coordinates yh ..., yk, φυ ..., <£n_fc mod 2π

such that in these coordinates the Hamiltonian equation χ = $Fl takes the
following form:

• ·

ym = c m i , <Ps = cosi (c, ω = const).

The proof of this theorem is by now too well known for us to repeat it
here (see [7], [16]). Hamiltonian systems with each of the Hamiltonian
functions Flt ..., Fn are called completely integrable.

The most interesting case is when Mf is compact. Then k — 0,
consequently, Mf = T". The uniform motion on Tn{y mod 2π} according to
the rule </?,· = φ?+ ω,-ί (1 < / < η) is called conditionally-periodic. The
numbers ωϊ; ..., ωη are its frequencies. The torus with the set of frequencies
oil, ·•••, ωη is called non-resonant if from 2 ^ ί ω ί = 0, with integers ku ..., kn,
it follows that all kt = 0. On non-resonant tori the phase trajectories are
everywhere dense. In the resonant case they fill out tori of lower dimension.

Small neighbourhoods of invariant tori Mf = T" in Μ are diffeomorphic
to the direct product D χ Τ", where Ζ) is a small domain in R". It turns
out that in D χ Τ" one can always introduce symplectic coordinates /, φ
(/ G D, φ G T") such that in these variables the Hamiltonian function of a
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completely integrable system depends only on / (see [7]). Here

7 = — 4 — = 0 , φ = -^-=ω(/).
°<Γ οι

Consequently, / = /0, ω(/) = ω(/0) = const. The variables /, which
"enumerate" the invariant tori in D χ Τ", are called "action" variables, and
the uniformly changing coordinates φ "angle" variables. The Hamiltonian
system is called non-degenerate (in D χ Τ") if

0-H
dl dl-

Φ0

in D. In this case almost all invariant tori (in the sense of Lebesgue
measure) are non-resonant, while the resonant tori are everywhere dense in
D χ Tn.

The system is called properly degenerate if

The reason for degeneracy may be that the number of first integrals on the
whole phase space is greater than η (but, of course, not all of them in
involution). Such is the case, for example, in Kepler's and in Euler's
problem. This situation is described by generalizations of Liouville's
theorem. We denote by Flt ..., Fn+k the independent first integrals of a
system with Hamiltonian Η and, as before, let Mj = {Ft = /,·}. We assume
Mf to be connected and compact.

Theorem on generalized action-angle variables (Nekhoroshev [43]). Suppose
that the first n- k functions Ft are in involution. Then in a neighbourhood
of Mf there are canonical coordinates Ι, ρ, φ mod 2π, and q such that

7, = 7,(/!I

1, . . ., Fn.h),

and ρ and q depend on all the Ft.

Theorem on the finite-dimensional algebra of integrals. Suppose that the Ft

generate a finite-dimensional algebra of integrals, that is, {Fiy F}} — 2cu^fe
and the rank of the matrix of Poisson brackets

II {Ft, Fj} ||

is Ik. Then the manifolds Mf in general position are (n- k)-dimensional
tori.

In the paper [39] by Mishchenko and Fomenko, where this theorem is
proved and applied, there is also the conjecture that the assumption on the
algebra of integrals being finite-dimensional can be removed. In fact, shortly
afterwards, Strel'tsov generalized the preceeding two results and showed that
if {Ft, Fj} = fif(Fl, .... Fn + k) and the rank of || {Ft, Fj) \\ is 2k, then in a
neighbourhood of Mf there are first integrals G,· satisfying Nekhoroshev's
generalization. This result was announced in [40]. As noted by Tatarinov
(unpublished), all of these generalizations of Liouville's theorem fall under
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the following observation: part of the integrals (2k of them) cut out
canonical submanifolds in Μ of dimension 2(«- k); in each of these a
proper Poisson bracket can be specified, for example, by Dirac's formula
[ 15]; then the restrictions of the remaining (n - k) integrals on these
submanifolds satisfy the usual Liouville theorem.

§3. Examples of completely integrable systems

1. The equations of rotation of a heavy rigid body around a fixed point are
Hamiltonian in the integral manifolds I23 = {F2 — f2, F3 = 1}. One integral
always exists: the energy integral. Thus, for the complete integrability of
the equations on I23 it is sufficient to know one other independent integral.
We list the known cases of integrability. As we have already noted the
problem of a heavy top contains 6 parameters: the three eigenvalues of the
inertia operator, Jh J2, J3, and the three coordinates of the centre of mass
relative to its eigenaxes rh r2, r3.

1) Euler's case (1750): rl — r2 = r3 = 0. The new integral is
Μ2 = </ω, / ω ) .

2) Lagrange's case (1788): Jx — J2, ri = r2 = 0. The new integral is
M3 = / 3 ω .

3) Kovalevskaya's case (1889): Jx = J2 = 2J3, r3 = 0. The integral, which
she found, is

(ω* — ω\ — v e , ) 2 + ^CUJCUO — v e 2 ) 2 ,

where > = er/J3, r<l = r\-^rr\.
4) Goryachev-Chaplygin's case (1900): Jl = J2 = 4/3, r3 = 0 and

f2 = (M, e) — 0. In contrast to l)-3) here we have an integrable case on a
single integral level I23.

We note that all these integrable cases form manifolds in the six-
dimensional parameter space /,·, rt of one and the same dimension 3.

2. The equations of motion in the first two cases have been studied in
detail from various points of view in the classical works of Euler, Poinsot,
Lagrange, Poisson, and Jacobi. The Kovalevskaya case is non-trivial in many
ways. She found it from the condition for meromorphicity of the solutions
of the Euler-Lagrange equations in the complex time plane. Recently,
Perelomov obtained the Kovalevskaya integral by means of a representation
of Lax [73]. The Goryachev-Chaplygin case is somewhat simpler: it can be
integrated by separation of the variables. Let us show this.

In the special canonical coordinates L, G, I, and g the Hamiltonian
function has the following form:

, r G2 + 3L2 , ι L , . . . \
H = —aj h μ I - £ - c o s I s i n g -\~ s i n I c o s gj, μ = e r .

We consider the canonical transformation

L = — Pi — p2, G = Pi —Pi, ?i = — I — g, q-i = g— I-
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In the new symplectic coordinates ρ and q
JJ _ Pi — Pa / Pi sin ?i , p 2 sin ga \

2-MPi —P2) V Pi — Pa ' Pi —P2 '

Putting this expression equal to h and multiplying by px - p 2

 w e see that it
separates:

''Pi — P't^Js + μΡι sin qt = /i/?2 — />j/2/3 — μ/λ, sin </2.

We put

(3.1) pl'2J3— uphill qx — Hpi-Γ, p*/2J3-f μ/>2 sin </,— Hp2 = T.

Here Γ is a first integral of the equations of motion. In the special
canonical variables it has the following form:

and in the traditional Euler-Poisson variables ω, e

Γ — — 2J\y, γ = ω3 (ω; + ω*) 4 νω,ί?3 (ν = μ / 3 ) .

We write down a closed system of equations for the change of variables

Pi. P2-

ή - — — — — - H ^ l — r o q o ή - dH — μ Ρ ι ca-n

or, taking account of (3.1),

(3-2)
Pi — P2 Pi — P a

where Φ(ζ) = μ2ζ2 — (Γ + Hz — z3/2/3)
2 is a polynomial of degree 6. The

solutions of these equations can be expressed in terms of hyperelliptic
functions of time. The variables px and p2 are changed in disjoint intervals
[alt bx\ and [a2, b2], where at and bt are adjacent roots of the polynomial
φ(ζ) between which it takes positive values.

We introduce angle variables ip1; φ2 mod 2π by the formulae

(3.3) φ, = —
/Φ(Ϊ)

"i "/

In the new variables (3.2) takes the following form:

where p,(z) are the real hyperelliptic functions of period 2TT, defined by (3.3).
Since the trajectories of (3.4) on T2{y mod 2π) are straight lines, the ratio

of the frequencies of the corresponding conditionally-periodic motions is
TJT2, the ratio of the periods of the hyperelliptic integral

(· dz
J V Φ (ζ) '

This remarkable fact holds even for the equations of Kovalevskaya's problem.
Details can be found in [32].
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3. The problem of the motion of a rigid body in an ideal fluid is much
richer in integrable cases (see [53]). We mention two of them: they were
discovered by Clebsch (1871) and Steklov (1893). In Clebsch's case it is
assumed that Β = 0, C = dmg(cu c2, c3) and

a~l (c2 — c3) + aj (c3 — ct) + ar3' {cl — c2) = 0.

An additional integral of the Kirchhoff equations has the" form

M\ + M\ + M* - a,e\ - a2e\ - a3e\.

In Steklov's case Β = diag(61( b2, b3), C = diag(c1; c2, c3), where

bj = \i(aia2a3)a'jXjrV, €ι = μ2αί (a2 — a3)
2 -f- ν ' , . . . , (μ, ν, ν ' = c o n s t ) .

An additional integral is

2μ (a} + v) Mje}) + μ2 ((α2 - a3f + ν") e\ + . . .

The parameters v, v', v" are not essential: their appearance is connected
with the presence of the classical Kirchhoff integrals F2 and F3.

4. The problem of the motion of η point vortices in a plane is completely
integrable for η < 3. The case η = 1 is trivial, for η = 2 independent
commuting integrals are, for example, the functions Η and M, for η = 3, the
functions Η, Μ, and Ρχ + Py. In the problem of four vortices there are as
many independent integrals as there are degrees of freedom. However, they
do not all commute.

We consider in detail the special case when the sum of the intensities Fs is
zero. Then the integrals Px and Py are in involution. If their constants are
zero, then the equations of motion of four vortices turn out to be Liouville
integrable. The idea of the solution is based on the application of a suitable
canonical transformation, which is standard in celestial mechanics in
connection with the "exceptional" motions of the centre of mass in the
«-body problem. To be definite let, Γχ = Γ2 = - Γ 3 = - Γ 4 = - 1 . We
consider the linear canonical transformation x, y ->• α, β given by

X2 = β3 — βί> Vi — «3 — βΐ + β2 '

x3 = αχ + α — β4, ί/3 = β2.

«4 = — α ι + β3 - β4, yt = — βι + β2-

In the new coordinates Px = a2, Py = a4. Consequently, the Hamiltonian
function Η does not depend on the conjugate variables β2 and j34. Thus, the
number of degrees of freedom is reduced by 2: we have obtained a family
of Hamiltonian systems with two degrees of freedom depending on the two
parameters a2 and a4. The variables au a3, β^ β3 are symplectic coordinates.
When a2 = a4 = 0, Μ is an integral of the "reduced" system. Consequently,
this Hamiltonian system with two degrees of freedom is completely integrable.
In particular, the functions a,, a3, p l f β3 \t can be found by quadratures.
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The remaining "cyclic" coordinates, |32 and β4, in view of the formulae

can be found by a simple integration. As far as the author knows, this
possibility has not been realized.

5. Other interesting examples of completely integrable systems can be
found, for example, in Moser's paper [42]. In the same place some modern
methods of integration of Hamilton's equations are discussed.

§4. Perturbation theory

1. Suppose that the direct product Μ = D χ Γ"{φ mod 2π}, D a domain in
R"{/}, is equipped with the standard symplectic structure and that
Η{1, φ, e):M χ (-e0, e0) -> R is an analytic function such that H(I, φ, Ο) =
= H0(I). The canonical equations with Hamiltonian Ho can be integrated
directly:

According to Poincare, the investigation of the complete system

(4.1) ' = - i f 5 <P = 4 f ; H = H0{I) + tHi(It < p ) + . . .

for small values of e is a basic problem of dynamics [48].
The idea of classical perturbation theory consists in the following: to

find a canonical transformation /, φ -> /, ψ, depending analytically on e,

/ = = ί ρ * = 1 J . •*(/, <P, ̂  = $0 + 65,+ . . . ,
such that

1) So = J*p (it is close to the identity),
2) the functions Sk(J, φ) are periodic in ψ with period 2π for all k > 1,
3) in the new variables Η = K(J, e).
Consequently, any function /(/, φ, e) that is 2w-periodic in ψ is also

27r-periodic in ψ in the new variables /, ψ.
If such a transformation can be found, the Hamiltonian equations (4.1)

are completely integrable. Here the η functions Js = JS(I, ψ, e),
JS(I, φ, 0) = /, (1 < s < n) form a complete set of independent integrals
in involution.

2. The function 5Χ(/, φ) satisfies the equality

where Kj(f) is, for the present, unknown. We expand the "perturbing"
function Hx in a multiple Fourier series:

# ι = Σ Hm (J) exp i (m, φ).
mEZ"
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If (4.2) has a solution that is periodic in φ, then

Let

Then

In the subsequent analysis a major role is played by the secular set
c f l , the set of / e D for which

(m, ω(/)
m=?!=0

In particular, those / e D for which < m, ω(/) > = 0, m Φ 0 and
Hm(J) Φ 0 belong to SB. By Bessel's inequality,

Σ S%l<oo
mtZn

and the generating function Sx is not defined on the set 58χ Τ" C Ζ) χ Τ".
In essence the secular set consists of those tori of the unperturbed

integrable problem that split under a perturbation of order e. In a typical
situation 33 is everywhere dense in D and this is connected with a well-
known difficulty, the phenomena of "small divisors", which obstruct not
only convergence, but even the formal construction of a number of the
classical schemes in perturbation theory.

3. Theorem 1. Suppose that (4.1) has η first analytic integrals

Ft : D Χ Τη Χ (—κ, x)-*R

such that
1) for all values of e the functions Fh ..., Fn are in involution,
2) Fid φ, 0 ) - / , ( / ) , 1 < / < « ,
3) the Jacobian

d(fi, •••, fn) _ ^ n

d(Iu . . . , / „ ) ^ U

in D. Then on G χ Τ" χ (-a, a), where G is a compact subdomain of D
and a is small, there is an analytic generating function S(J, φ, e) satisfying
§4.1, l)-3).

If the equations (4.1) have integrals that are formally analytic in e
(power series in e with analytic coefficients in D χ Τ") and satisfy the
conditions of the theorem, then we can construct (at least formally) the
series of perturbation theory defined for (/, φ) Ε D χ Τ". Let us prove
this.
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Let FS(I, φ, ε) = /„(/) + Σ ε * ^ / , φ). We consider the system of
equations

(4.3) Fs(^-, φ, ε ) = / . ( . / ) + 2 eh/,h (J) ( l < s < n )

with at present unknown analytic functions fsk: Z) -> R. For e = 0 (4.3) is
satisfied if we put So = Ιφ. Since FS(I, φ, Ο) = fs(I) and

d(Iu . . . . J n ) ^ U '

the / i k given there define a formal series

(4.4) / ( φ , ε ) = - ^ = / + ε ^ - + . . . ,

satisfying (4.3). We claim that the differential form /(φ, ε)άψ = — dtp is
exact. To prove this we need a simple lemma.

Lemma. Suppose that

is a given system of equations in R2"{p, q) and that ps = fs(q, ch ..., cn) is a
solution of it. If the functions Fh ..., Fn commute {in the standard
symplectic structure on R2"), then for fixed values of c the form ^ fs(q, c)dqs

is a complete differential.

Proof. The functions Gs(p, q) = ps-fs{q, F^p, q), ..., Fn(p, q)) are
obviously constant. Since Fj, .... Fn commute,

as required.
For an arbitrary choice of fsk(J) the functions Sk(J, φ) are multivalued on

T". This can be removed by choosing the fsk in a suitable way. First let
k = 1. From (4.3) we obtain

< 4 · 5 ) ( I f ' ̂ >=/Μ(·/)-/%.(/,φ)·
If we put

then from (4.5) we obtain a periodic solution 5X. When k > 1 we have for
the definition of Sk and fsk an equation of the form (4.5) whose right-hand
side contains the known functions Sm and fsm (m < k).

In the new canonical coordinates J, \p the functions Flt ..., Fn depend
only on / and e. Since these functions are first integrals of the Hamiltonian
system (4.1) and are independent, the same is true for Ju .... Jn. Consequently,
the Hamiltonian function Η does not depend on the angles ψ:

OH
•= — / = 0.

This proves the theorem.
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§5. Normal forms

1. We consider the Hamiltonian system

ζ = 3/7', z = (ρ, g ) 6 R 2 "

in a neighbourhood of ζ = 0. Suppose that the real-analytic function Η can
be represented by a convergent power series in z, beginning with terms of
the second degree: Η — Jj Hh. Then ζ — 0 is, obviously, a position of
equilibrium. h>z

Of special interest is the case when the eigenvalues of the linearized
system ζ = ^,H'2 are purely imaginary and distinct. It is well-known [ 18],
that then there is a linear canonical transformation of coordinates/?, q -*• x, y
that takes the quadratic form H2 to

(5.1) -5-2α

The eigenvalues are precisely ±iau ..., ±ian.

Theorem 1 (Birkhoff). If <*i, .., an are independent over the rationals, then
there is a formal canonical transformation x, y -* ξ, η (given by a formal
power series S(x, η) = χη+ 2 Sm(x, η):ξ — S^, y = Ξ*) that transforms

H(x, y) into a Hamiltonian K{p), a formal power series in ps = £ + η% [9].

If the series S<S'm converges, then the equations with Hamiltonian Η are
completely integrated: pu ..., pn are power series in χ and y that form a
complete set of independent integrals in involution. The converse is also
true.

Theorem 2 (Riissman). If a system with Hamiltonian Η = Ύ Hk has n
analytic integrals in involution h^1

and det || x m s || Φ 0, then the Birkhoff transformation converges [74].

Normalization of a Hamiltonian system in a neighbourhood of a stable
position of equilibrium is closely connected with the classical scheme of
perturbation theory. For by introducing a small parameter e by χ ->· ex,
y -*• ey and passing to polar coordinates /, φ by the formulae

xs~]/ 21s sin φ5, z/5 = V 2/ s cos φ8,

we obtain a Hamiltonian system

with Hamiltonian H = Σ zmHm(I, ψ), #ο = Σα<Λ,

(x, y) | / ι Φ ,

that is 2ff-periodic in φ. If the frequencies a, = ^ i are rationally
01 s
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independent, then there are formal series of classical perturbation theory
corresponding to the Birkhoff transformation. Russman's theorem can be
derived by the same device from Theorem 1 of §4.

2. In applications Η usually depends on certain parameters e e D (where D
is a domain in Rm). We take H(z, e) to be analytic in ζ and e and
//'(0, e) = 0 for all e. If for all e the eigenvalues of the linearized system
are purely imaginary and distinct, then by a suitable linear symplectic
transformation that is analytic in e, the form H2 can be reduced to the
"normal" form (5.1). The coefficients as, of course, are analytic in e. The
following theorem is an insignificant improvement of Russman's result.

Theorem 3. Suppose that there exist η integrals in involution

Gm(x, y, ε) = - |"2 κ 'η«( ε ) 0 * 1 + ^ ) + Σ Gmh(xi 2/- ε),

that are analytic in e and such that det || κηΐ8(ε) \\φ Ο for all e e D. Then
there is an analytic canonical transformation x, y -*• ij, η that is analytic in e
and takes H{x, y, e) to the Hamiltonian K{plt ..., pn, e), p] - %j+r\].

If the series Yfimk are formal (not necessarily convergent), then we can
find a formal canonical transformation "normalizing" the Hamiltonian H.
In particular, under the conditions of the theorem, the Birkhoff
transformation exists also for rationally dependent sets of frequencies
a1( ..., an.

The transformation to normal form can be carried out not only in
neighbourhoods of positions of equilibrium, but also, for example, in
neighbourhoods of periodic trajectories. All that has been said above
remains valid with necessary changes in that case.

CHAPTER MI

TOPOLOGICAL OBSTRUCTIONS TO COMPLETE INTEGRABILITY OF NATURAL
SYSTEMS

§ 1 . The topology of the state space of an integrable system

1. We consider a mechanical system with two degrees of freedom (see Ch.I,
§ 1). We assume that its state space Μ is a compact orientable analytic
surface. The topological structure of such surfaces is well known: they are
spheres with a certain number κ of handles attached. The number κ is a
topological invariant of the surface, it is called its genus.

The motions of a natural system are described by the Hamiltonian
equations in the cotangent bundle T*M, which is its phase space. The
bundle T*M has a natural structure as a four-dimensional analytic manifold.
We assume that the Hamiltonian function H: T*M -* R is everywhere
analytic. Since Η = Τ(ρ, q) + U(q) and T(p, q) is a quadratic form in
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ρ e TqM for all q e M, the functions T(p, q) (kinetic energy) and U(q)
(potential energy) are analytic on T*M and M, respectively. The solutions of
the canonical system

(1-1) Ρ=~ΊΤ' q = ^F

are analytic maps from R{i} to T*M. On their trajectories the total energy
Η - T+ U, of course, is constant.

Theorem 1. If the genus of Μ is not equal to 0 or 1 {that is, if Μ is not
diffeomorphic to the sphere S2 or the torus T2), then the equation (1.1)
does not have a first integral that is analytic on T*M and independent^ of
the energy integral [31].

Numerous examples are know of integrable systems whose configuration
spaces are homeomorphic to S2 or T2 (say, the motion of an inertial material
particle on a "standard" sphere or torus).

In the infinitely differentiable case Theorem 1, generally speaking, is not
valid: for any smooth surface Μ one can give a "natural" Hamiltonian
Η = T+ U such that Hamilton's equations (1.1) on T*M have an additional
infinitely differentiable integral independent of (more precisely, not
everywhere dependent on) H. For let us consider the standard sphere S2 in
R3 and suppose that Μ is obtained from S2 by attaching any number of
handles to some small domain Ν on S2. Let Η be the Hamiltonian function
for the problem of the motion of an inertial particle {U = 0) οηΛί,
embedded in R3. Outside Ν the particle obviously moves along great circles
of S2. Consequently, in the phase space T*M there is an invariant domain
that is diffeomorphic to the direct product D χ Τ2 foliated into two-
dimensional invariant tori. The points of D "enumerate" these tori. Let
/ : / ) - • R be a smooth function that vanishes outside some subdomain G
lying wholly within D. Corresponding to / there is a smooth function F on
D χ T2 that is constant on the invariant tori of D χ Τ2. It extends to a
smooth function on the whole of T*M if we put F = 0 outside G χ Τ2.
Obviously, F is a first integral of the canonical equations (1.1) and the
functions Η and F (for suitable / ) are not everywhere dependent.

2. Theorem 1 is a consequence of a stronger result establishing the non-
integrability of the equations of motion for fixed sufficiently large values of
the total energy. The precise statement is as follows. For all values
h > maxM U the level of total energy Ih = {χ ζ Τ*Μ: Τ + U = h) is a
three-dimensional analytic manifold having the natural structure of a fibre
space with base Μ and fibre S1. Local coordinates on Ih are q, ψ, where q
are coordinates on Μ and φ is the angular variable on the "fibre"

^Analytic functions are called independent if they are independent at some point (they
are then independent almost everywhere).
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Sq = {Ρ Ε TgM : Τ (ρ, q) + U(q) = h} , which is a circle in the cotangent
plane. Since the initial Hamiltonian vectorfield 3 # ' i s tangent to Ih, on Ih

there arises a certain analytic system of differential equations.

Theorem 2. // the genus of Μ is not equal to 0 or 1, then for all h > maxMU
the flow on Ih does not have a non-constant analytic integral.

3. In the infinitely differentiable case, under the assumptions of Theorems 1
and 2 we can assert that new smooth integrals satisfying certain supplementary
conditions are absent.

Theorem 3. If the genus of a smooth surface Μ is not equal to 0 or 1, then
for all h > maxMU the phase flow on Ih does not have an infinitely
differentiable first integral f{p, q~):Ih ->· R such that

a) it has finitely many critical values, and
β) the points q e Μ for which the set {f{q, φ) = c) is finite or is the

whole fibre S\ are everywhere dense in M.

In the analytic case the conditions a) and β) are automatically satisfied.
Here condition β), obviously, holds for all q € M. But a) is non-trivial: a
proof can be found in [75].

More generally, if a compact orientable smooth surface Μ is not
homeomorphic to the sphere or the torus, then the equations of motion do
not have a new integral F{p, q) that is an infinitely differentiable function
on T*M, is analytic for fixed q e Μ on the cotangent plane TJM, and has
finitely many distinct critical values. Functions that are polynomial in the
velocity are an extensive class of examples of integrals that are analytic in
the momenta p. The collection of distinct critical values of a smooth function
on a compact manifold is finite if, for example, all the critical points are
isolated or if the critical points form a non-degenerate critical manifold.

The examples of §1.1 do not contradict Theorem 3: β) obviously does
not hold for points q € Μ that are sufficiently remote from the "singular"
domain N.

4. Theorems 1-3 also hold in the case of non-orientable compact surfaces
if, in addition, the projective plane RP2 and the Klein bottle Κ are excluded.
For the standard regular double covering Ν ->• Μ, where Ν is an orientable
surface, induces a certain mechanical system on N, which has an additional
integral if the system on Μ has a new integral. It remains to remark that when
Μ is not homeomorphic to RP2 or K, then the genus οι Ν is greater than 1.

§2. Proof of the theorem on non-integrability

1. According to the Maupertuis principle of least action, the trajectories of
the motions of a mechanical system that lie on integral level surfaces Ih with
total energy h > maxMi7 are geodesic lines of the Riemannian space (M, ds),
where the metric ds is defined by the form (ds)2 = 2(h- U)T(dt)2.
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We fix a point q e Μ satisfying j3). Since (M, ds) is a smooth two-
dimensional compact orientable Riemannian manifold and not homeomorphic
to the sphere, by a theorem of Gaidukov [ 12], for any non-trivial class of
freely homotopic paths in Μ there are geodesic semitrajectories Γ emanating
from and approaching asymptotically some closed geodesic from the given
homotopy class. The geodesic Γ itself may be a closed curve. In what
follows, the geodesic semitrajectory Γ is called a Γ^-geodesic.

Suppose that the reduced system has on Ih an infinitely differentiable
first integral F(q, φ). Any of its non-critical levels is a union of a certain
number of two-dimensional invariant tori. In the cotangent plane Tq*M we
consider the circle Sq consisting of vectors ρ such that T(p, q)+ U{q) = h.
To each ρ e Sq there corresponds a unique motion q{t), p(t) with the initial
conditions q(0) = q, p(0) —p. F is constant on this motion. The
momentum ρ is called critical if the corresponding value of F is critical. We
claim that there are infinitely many distinct critical momenta. If the
number of critical momenta is finite, then Sq splits into finitely many open
sectors Δ ΐ 5 ..., An such that any momentum ρ e Δ,·, 1 < i < n, is non-
critical.

With each ρ e Δ,- we can associate a unique invariant torus 7^ on which
the solution q(t), p(t) of (1.1) with the initial conditions #(0) = q, p(0) — ρ
lies. Since there are non-critical values of F for ρ e Δ,·, the natural map

/,: AtxT*-+Dt = U η
Ρ£Δ ;

is continuous. Let π:Τ*Μ -• Μ be the projection of the cotangent bundle
T*M onto M. We put Xt = π(Ζ),) c M. The continuous map π°/(-: Δ,- -• X(

induces a homomorphism of the homology groups gt 'Ηχ(Α( χ Τ2) -*• Ηι{Χ{).
Since Xt c M, there is a natural homomorphism ψ(:Ηχ(Χι) ""* H\(M)· We
denote by Gt the subgroup of Ht(M) that is the image of //ι(Δ,- χ Τ2) -> H^M)
under the homomorphism ip^gi :^ι(Δ,· χ Τ2) -> HX(M). The elements of
Hi(M) are homology classes of cycles, and in each class there is a connected
cycle. Freely homotopic cycles, obviously, are homologous. Fq-geodesies
corresponding to non-critical initial momenta are, of course, closed. For
certain critical initial momenta the Γ, -geodesies may turn out not to be
closed. These geodesies are "winding" on certain cycles y generating one-
dimensional subgroups {ny, η £ Z}cz Hl{M). By hypothesis, the number of
critical momenta is finite. Consequently, the number of such subgroups is
also finite. We denote them by Nh .... Nm. If a e H^M) does not lie in the
union Νχ υ ... υ 7Vm, then in the class of homologous cycles α there is at
least one closed Fq-geodesic. Since Γ,-geodesies under the maps π ο f{ go
over to certain closed curves in the domains Δ,χ Τ2, ..., Αη χ Τ2, the set
HxiMTKUNj is wholly covered by the subgroups Gh ..., Gn. Since
HyiAt κ Τ2) » H^T^^Z- (1 < / < η), the G, are Abelian subgroups of
rank not exceeding 2. It is well known that if the genus of Μ is κ, then
ΗΛ(Μ) χ Ζ2*. Since Μ is not homeomorphic to a sphere or a torus, 2κ!> 4,



32 V.V.Kozlov

and from dimension arguments it follows that HX(M) cannot be covered by
finitely many one-dimensional and two-dimensional subgroups. This
contradiction proves that the collection of critical momenta is infinite.

According to a) the number of distinct critical values of the function
F:Ih -* R is finite. Consequently, for the value of q £ Μ fixed above the
function F(q, ψ), φ € S^, takes the same value infinitely often. But then, by
β), F{q, φ) is constant on Sj, (that is, does not depend on φ). The surface Μ
is connected and compact, hence, any two of its points can be joined by a
minimal geodesic [38]. Since F is constant along each motion, it takes the
same value at all points q € Μ satisfying β). Since, by assumption, the set
of such points is everywhere dense in M, F = const by continuity.

This proves the theorem.

2. Another proof of Theorem 1 based on the introduction of a complex-
analytic structure on M, is in the paper [34] by Kolokol'tsov. There is also
a description of the two-dimensional systems with first integrals that are
quadratic in the velocity.

§3. Unsolved problems

1. Does the existence of new analytic integrals impose restrictions on the
topology of the analytic manifold Μ when dim Μ > 2? In particular, can
any many-dimensional analytic manifold be the state space of a completely
integrable analytic natural mechanical system?

We remark that on the manifold T*M with the natural canonical structure
there are always completely integrable (not natural) Hamiltonian systems.
For η independent analytic functions fs:M -*• R ( l < s < « , η = dim M) are
independent as functions on T*M and are in involution. It would seem that
this property holds for arbitrary (or, at least, compact) analytic symplectic
manifolds.

2. Let k be the Gaussian curvature of the Maupertuis Riemannian metric
(ds)2 = 2(h - U)T(dt)2 on M. By the Gauss-Bonnet formula

Μ

where χ(Μ) is the Euler characteristic of the compact surface M. If the
genus of Μ is greater than 1, then x(M) < 0, consequently, the mean
curvature is negative. If the curvature is negative everywhere, then the
dynamical system on Ih is a y-system, consequently, is ergodic on Ih [2] .
This result holds also in the many-dimensional case (we need only require
that the curvature is negative in all two-dimensional directions). Here the
differential equations of motion on Ih do not even have continuous integrals,
since almost all trajectories are everywhere dense on Ih. Of course, a
curvature that is negative in the mean is by no means always negative
everywhere. It would be of interest to study the connection between
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complete integrability of a natural system and the geometric properties of
the Riemannian space {M, ds) (not only with the coarser topologies).

"Mais ce n'est pas aux geodesiques des surface a courbure opposees que
les trajectoires du probleme des trois corps'^ sont comparable; c'est, au
contraire, aux geodesiques des surfaces convexes ... malheureusement, le
probleme est beaucoup plus difficile ... J'ai done du une boruer a quelques
resultats partiels ..." (Poincare [49]).

CHAPTER IV

NON-INTEGRABILITY OF NEARLY INTEGRABLE HAMILTONIAN SYSTEMS

In this chapter we investigate the integrability of the "fundamental
problem" of dynamics:

(i)

§1. Poincare's method

1. We introduce into the discussion the Poincare set 2B, which is related
to the secular set 23 (defined in Ch.II, §4). Let

mtZn

The Poincare set SB is the set of values / e D for which there exist η - 1
linearly independent vectors kh ..., kn-x e Z" such that

1)(A-S, ω(/)> = 0, l < i < r a - 1,
2) Hhs (Ι) Φ 0.

In the case of two degrees of freedom, obviously, SScr 58.
We denote by ?I(F) the class of functions that are analytic in a domain

V c R". A set Μ C V is called a key set (or set of uniqueness) for 3(F) if
any analytic function that vanishes on Μ vanishes identically on V. Thus, if
two analytic functions coincide on M, then they coincide on the whole of V.
For example, a set of points of an interval A c R is a key set for 3(Δ) if
and only if it has a limit point in the interior of Δ. The sufficiency of this
condition is obvious, the necessity follows from Weierstrass' theorem on
infinite products. We note that if Μ is a set of uniqueness for the class
C~( V), then Μ is dense in V.

Theorem 1. Suppose that the unperturbed system is non-degenerate:
det || d-HJdl" \\ -φ. 0 in D; that 1° e D is a non-critical point of Ho; and
that in any neighbourhood U of it the Poincare set 9S is a key set for 91(77).
Then the Hamiltonian equations (I) do not have an integral F independent
of Η that can be expressed as a formal power series 2 Fs(I, φ)ε5 with
coefficients analytic in D χ Τ" {see [48], [25]). ^°

of many other problems of classical mechanics.
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A formal series S/Se' is regarded as being zero if all fs — 0. The series
F = Σ FfceMs a formal integral of the canonical equations with the

Hamiltonian Η = 2 # m e m if

Two series y\ / se
s and Σ ^ ε " are regarded as dependent when all second-

order minors of their Jacobian matrices are identically zero as formal series
in powers of e.

For the proof of Theorem 1 we need the following lemma.

Lemma 1. Suppose that the functions FS:D χ Τ" -> R are continuously
differentiable and that the series Σ FS(I, φ)ε* is a formal integral of (1)

with a non-degenerate function Ho. Then
1) Fo(7, φ) does not depend on ψ.

2) Ho and Foare dependent on%.

Proof. The condition {77, F} = 0 is equivalent to the sequence of equations

C\ W (FT F \ — 0 (H FA A- iff, F \ = 0

From the first equation it follows that Fo is an integral of the unperturbed
equation with Hamilton function Ho. Suppose that the torus / = 7* is non-
resonant. Then F0(I*, φ) does not depend on φ, since any trajectory fills out
a non-resonant torus densely. To complete the proof of 1) it remains to
take into account that Fo is continuous and the set of non-resonant tori of a
non-degenerate integrable system is everywhere dense.

1^ίΦα,Φ1 D χ Γ -> R be continuously differentiable functions, Φ 0 not
depending on φ. Then

(2π)« J

where

Taking account of this remark, from the second equation of (1.1) we
obtain a sequence of equalities:

(m, ?%fy Fm (I) = (m, ψ) Hm (/), m 6 Z".

Let 7 ζ 2ΰ. Then at this point the vectors dH0/dI and bF0/dI are obviously
dependent.

Proof of Theorem 1. Since at 7° e D among the derivatives θ/70/9Λ, •••,
..., 9//0/3/n is at least one non-zero, in a small neighbourhood U of this
point we can take Ho, I2, ..., In as local coordinates (if 3i/0/9/i ψ 0).
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By Lemma 1, the functions Ho and Fo are dependent on the Poincare set.
Since the minors of the Jacobian matrix

d(H0, Fb)

d(h, . . . , / n )

are analytic in U and 3B Π U is a key set, the functions Ho and Fo are
dependent throughout U, consequently, in the new coordinates Fo = F0(H0).

Since F- FQ(H) = εφ, we see that φ is a formal integral of (1). Let
Φ = Τ\ Φ 5ε 8 . Then, by Lemma l ^ 0 d o e s not depend on the angle

variables φ, and Φ ο is dependent on Ho in U. Consequently^,, — Φ0(Η0) and
again φ - Φ 0 ( # ) = εΨ. But then F = F0(H) + εφ^/Γ) + ε 2Ψ. Repeating the
operation as often as necessary we find that the expansion of all second-
order minors of the Jacobian matrix

d(H, F)
d(I, q>)

in series in powers of e begins with terms of arbitrarily high order. Hence,
Η and F are dependent.

2. Theorem 2. Suppose that Ho is non-degenerate in D and that the
Poincare set SZB is everywhere dense in D. Then the equations (1) have no
formal integral Sl^sS8» independent of H, with infinitely differentiate
coefficients FS:D χ Τ" -+ R.

The result is simple to prove by the method of §3.1.

3. We now consider the non-autonomous canonical system of equations

.(1.2) ί^-~, φ - 4 τ ; Π = ΗΛΙ) + εΗι{Ι, φ, f) + . . .

The Hamilton function Η is assumed to be analytic and 27r-periodic in φ
and t.

The equations (1.2) arise, for example, in the study of the autonomous
system (1) when one of the angle coordinates φ is taken as the new time.
For example, let dH/dli Φ 0. Then (at least locally) we can solve the
equation H(I, φ, t, e) = h for /j and find that

11 = — A* (/o, . . ., Λ., Φ2. · · Μ φ η , τ, ε, h), τ = ψ}.

Since φ1 Φ 0, the solutions Ij^t) and <ps(t) (s > 2) of the original equations
can be regarded as functions of τ. By Whittaker's theorem [7], [55], the
functions IS(T) and <ps(r) (2 < s < n) satisfy the canonical equations

dh __ dK άφ.< _ dK
dx d(fs ' dx dls '

These have the form (1.2).
Again it is useful to introduce the Poincare set 25* as the set of points

I & D satisfying the following conditions:
1) there exist η linearly independent vectors ks e Z" and η integers ms

such that (ks, ω{Γ)) + ηι!1 = 0, 1 < s < n,
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2) the Fourier coefficients H,,s,n^(I) of the expansion of the perturbing
function

H ^ . Σ frhm(/)e*«*.*>+"·')
(h. m)ezn+l

are non-zero.
We note that if (1.2) are the Whittaker equations obtained from the

autonomous equations (1) by a reduction of the order, then the Poincare set
33Α of the reduced system is the projection onto the plane Hn~1{I2, ..., /„} of
the intersection of the Poincare set 5B of the initial system with the level
surface Η0(Ιγ, .... /„) = h.

Theorem 3. If Ho is non-degenerate in D and 523* is a key set for S)[(D), then
the equation (1.2) have no formal integral

Σ F* (/, Φ, t) ε5

with analytic coefficients FS:D χ T" + i -* R [ 2 5 ] .

The proof of Theorem 3 is based on a successive application of an
auxiliary result similar to Lemma 1 of §3.1.

Lemma 2. Let FS:D χ Tn + 1 -+ R be continuously differentiable and let
2 7%ε* be a formal integral of (1.2) with a non-degenerate function Ho.
Then

1) F0(I, φ, t) does not depend on ψ or t,
2) dF0 = OonSEB*.

If the Poincare set 2B,.. is everywhere dense in D, then the equations (1.2)
obviously have no formal integral with continuously differentiable coefficients.

It is interesting to note that for η = 1 a theorem of Kolmogorov on the
preservation of conditionally periodic motions [4] has the consequence that
there exists a first integral, analytic in e, with non-constant continuous
coefficients. By way of contrast, in the many-dimensional case, for systems
of general form, even a continuous integral seems impossible (see [6]).

§2. The creation of isolated periodic solutions—an obstruction to integrability

1. We recall some facts from the theory of periodic solutions of differential
equations. We consider an autonomous system χ = /(χ); let x(t, y) be the
solution of it with the initial value x(0, y) = y. We assume that the system has
an ω-periodic solution x{t, x0). Then

is the fundamental matrix of the linear system in variation
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Obviously, X(0) — E. Here Χ(ω) is-called the monodromy matrix for the
ω-periodic solution x(t, x0). Its eigenvalues λ are called multipliers, and the
numbers a defined by λ = εχρ(αω) are called characteristic exponents. The
multipliers λ may be complex, therefore, the characteristic numbers a are not
uniquely determined. Since (Χ(ω)- E)f(x0) = 0 and/(jc0) Φ 0, in the
autonomous case one of the multipliers λ is always equal to 1. By the theorem
of Poincare-Lyapunov [7], the characteristic exponents of an autonomous
Hamiltonian system are pairwise equal in size and opposite in sign. Two of
them are always zero. In the case of two degrees of freedom the remaining
two characteristic exponents are either both real or both purely imaginary. If
they are non-zero, then the periodic solution is called non-degenerate or
isolated: on the corresponding three-dimensional energy level, in a small
neighbourhood of the periodic trajectory, there are no other periodic solutions
with period close to ω. A non-degenerate solution with real exponents is
called hyperbolic, and with purely imaginary exponents, elliptic. A hyperbolic
periodic solution is unstable, and an elliptic solution is stable in a first
approximation.

We assume that the Hamiltonian system with two degrees of freedom <;z =377'
has, in addition to H(z), an integral F(z).

Theorem 1 (Poincare). If ζ is on the trajectory of a non-degenerate periodic
solution, then the functions H(z) and F(z)are dependent at ζ [48].

Proof. Since F{z) is a first integral, F(z(t, ξ)) = F(£) for all t Ε R.
Differentiating this identity with respect to ξ we obtain

(2\\ ILIl-lL

Since z(t, f) is a periodic solution with period ω, for i = u w e obtain from
(2.1) the equality

(2-2) (Ζ(ω)-Ζ?)-§£ = 0.
Similarly,

(2.3) ( Χ ( ω ) - £ ) - ^ = 0.

Since the system is autonomous,

(2.4) (Χ(ω)-£)3-2|- = 0.

Since the periodic solution z(t, ξ) is non-degenerate, from (2.2)-(2.4) we
conclude that the vectors F'(f). #'(?), and-3J7'(£) are linearly dependent:

(2 5) λ1*" + λ 2 # ' + λ33£Τ' = 0, Σ Ι λ,

Obviously, (F', £»#') = 0 and (Η', 377') = 0. Taking the scalar product of
(2.5) with 3 # ' we have λ3<3#', 377') = 0, hence, λ3 = 0. But then it
follows from (2.5) that Η and F are dependent at ξ, as required.

Poincare's theorem gives us a method of proving non-integrability: if the
trajectories of non-degenerate periodic solutions densely fill out the phase
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space, or at least form a key set, then the Hamiltonian system has no
additional analytic integral. Apparently, in Hamiltonian systems in general
position the periodic trajectories are, in fact, everywhere dense (Poincare
[48]). This is still unproved. In the context of Poincare's conjecture we
mention the following result on geodesic flows on Riemannian manifolds of
negative curvature: all periodic solutions are of hyperbolic type and the set
of their trajectories densely fills out the phase space [2].

For Hamiltonian systems close to integrable ones, one can prove the
existence of a large number of non-degenerate periodic solutions and from
this derive the results of § 1.

2. Suppose that for 7 = 7° the frequencies ω ι and ω 2 of the unperturbed
integrable problem are commensurable and that cot Φ 0. Then the
perturbing function T/jCT0, ω^, ω 2 ί + λ) is periodic in / with some period T.
We consider its mean value

s Γ

#!(/", λ) = lira — ( #,(7°, coji, ω,ί + λ)Λ =-f Γ Hiat.
0 0

Theorem 2 (Poincare). Suppose that the following conditions are satisfied:
1) detll 9277O/972II Φ 0 at the point 7=7° , _
2) for some λ = λ* the derivative dRJb\ = 0 but b2HJd\2 Φ 0.

Then for small e Φ 0 there is a periodic solution of the perturbed Hamiltonian
system (1) of period T; it depends analytically on e, and for e = 0 it
coincides with the periodic solution of the unperturbed system

I — Ι", ψ! = (0]i, φ2 = ω2ί + λ*.

The two characteristic exponents ±a of this solution can be expanded in
series of powers of Y~t:

a. = ax ΐ/ε + α2ε + α3ε
where _

A proof can be found in [48], [32].
The function 771(7°, λ) is periodic in λ with period 2π. Hence, there exist

at least two values of λ for which dHx = 0. In general, these critical points
are non-degenerate. There are as many local minima (where d2Hxld\2 > 0)
as local maxima (where d2Hxld\2 < 0). In a typical situation for 7 = 7°

(2.6) ω ^.£!^ΐ-2ω,ω 2 *'% +ωΙ~^-φθ.
1 01 ^ ΟΙ ι ΟΙ % 01 £

Incidentally, the geometric condition indicates the absence of inflexions on
the curve H0(I) = h at 7 = 7°. Thus, the equation dHx = 0 has as many
roots for which a2 < 0 as roots for which a2 > 0. Equivalently, for small
values of e Φ 0 the perturbed system has as many periodic solutions of
elliptic type as of hyperbolic type. In this situation it is usual to say that
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the disintegration of the unperturbed invariant torus 1 = 1° creates pairs of
isolated periodic solutions. By results of KAM-theory, the trajectories of
typical elliptic periodic solutions "surround" invariant tori. Hyperbolic
periodic solutions have two invariant surfaces (separatrices) filled out by
solutions that approximate asymptotically to periodic trajectories as t -*• ±°°.
Various asymptotic surfaces may intersect, forming a rather tangled network
in the intersection (see Fig. 5). The behaviour of the asymptotic surfaces
will be discussed in detail in the next chapter.

Fig. 5

3. The main basis of the proof of non-integrability of the perturbed
equations is Lemma 1 of § 1: if F = F0(I, ip) + eFi(7, φ)+... is a first
integral of the canonical equations (1), then Fo does not depend on φ, and
the functions 77O and Fo are dependent on the Poincare set 2B. The first part
of the lemma follows from the non-degeneracy of the unperturbed problem.
Using Poincare's theorem from §1.1 we can prove the dependence of 770

and Fo on the set s$ of unperturbed tori / = 7°, which satisfy the conditions
of Theorem 2 and the inequality (2.6).

For the periodic solutions F(e), arising from the family of periodic
solutions situated in the resonant tori 7° £ ίβ are non-degenerate. Therefore,
as was proved in § 1.1, 77 and F are dependent at all points of F(e). Let e
tend to zero. The periodic solution F(e) goes over into one of the periodic
solutions F(0) of the unperturbed problem lying on the torus 7 = 7°, and
the functions Η and F become 77O and Fo. By continuity they are dependent
at all points of F(0). Consequently, the rank of the Jacobian matrix

is

a (i, φ)a (i, φ)

equal to 1 at points (7, φ) e F(0). In particular, at these points
d(ff0, Fo) n

d(h,



40 V. V. Kozlov

To complete the proof it remains to note that the functions Ho and F o do
not depend on φ.

We mention that always $ cr 3δ, however, in typical cases the sets S4$ and
SK coincide. In addition, in the above arguments the integral F was assumed
to be analytic in e, but in § 1 it was proved that there are no integrals
formally-analytic in e. However, our aim was to clarify the geometry of the
analytic computations of § 1.

For small values of the parameter e Φ 0 Theorem 2 guarantees the
existence of a large but finite number of distinct isolated periodic solutions.
Therefore, from this theorem one cannot deduce the non-integrability of
perturbed systems for fixed values of e Φ 0. True, in the case of two
degrees of freedom, which is what we are considering, the following result
holds: if the unperturbed system is non-degenerate, then for small fixed
values of e Φ 0 the perturbed Hamiltonian system has infinitely many
distinct periodic trajectories. Unfortunately, nothing can be said about their
isolation. This result can be deduced from Kolmogorov's theorem on the
preservation of conditionally periodic motions and Poincare's last geometric
theorem [50].

§3. Applications of Poincare's method

1. We return to the restricted three-body problem considered in Ch. I, §4.
We assume to begin with that the mass of Jupiter μ is zero. Then in the
"fixed" space an asteroid rotates around a sun of unit mass in Keplerian
orbits, say ellipses. Then it is convenient to go over from the rectilinear
coordinates to the Delone canonical elements L, G, I, g; if α and e are the
major semi-axis and the eccentricity of the orbit, then L — y/a,
G = \/{a{\ - e2)), g is the length of the perihelion and / is the angle defined
by the position of the asteroid in its orbit, the eccentric anomaly [48],
[59]. It turns out that in the new coordinates the equations of motion of
an asteroid are canonical with the Hamiltonian function Fo — -\/2L2. If
μ Φ 0, then the complete Hamiltonian F can be expanded in a series of
increasing powers of μ: F = Fo+ μΡχ + ... Since in a moving coordinate
system connected with the Sun and Jupiter Keplerian orbits rotate with unit
angular velocity, the Hamiltonian function depends on L, G, I, and g- t.
We put * ! = L, x2 = G, }>i = I, y2 — g- t, and Η — F- G. Here Η depends

on x( and yt only, and is 27r-periodic in the angular variables yx and y2. As
a result we have expressed the equations of motion of an asteroid in the
form of the following Hamiltonian system:

(3.1) *,~, ^ = — S f " . Η = Η0-τμΗ,-τ.... / / „ = - - ^ L - * , .

The expansion of the perturbing function in a multiple trigonometric series
in j>i and y2 was already studied by Lever'e (see, for example, [59]).
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It takes the following form:

Η -= - oe τ---- οο

The coefficients Huv, which depend on Xj and x2, are in general non-zero.
The Poincare set SB for this problem consists of lines parallel to the

jc2-axis: u/x\- υ = 0, Huv Φ 0. It is dense in the half-plane xx > 0.
However, Poincare's theorem on the absence of new analytic integrals cannot
be directly applied because of the degeneracy of the unperturbed problem:
detll d2H0/Bx2\\ = 0. This difficulty can be overcome by using the fact that
the canonical equations with Hamiltonians Η and exp Η have the same
trajectories (but not the same solutions). Consequently, these equations are
simultaneously integrable or non-integrable. It remains to note that
exp Η = exp # 0 + μ ( β χ ρ # 0 ) # i + ··· a n d detll 3 2 exp H0/bx2\\ Φ 0. Thus, we
have found that the equations of the restricted three-body problem in the
form (3.1) do not have an integral Φ — 2 ^'«(Λ independent of Η and
formally-analytic in μ, whose coefficients are smooth functions on
D χ T^iy mod 2π}, where D is an arbitrary domain in the half-plane x1 > 0.

Whittaker's procedure of reduction of the order is applicable to the
autonomous system (3.1). We fix a constant energy h < 0 and solve the
equation H(x, y, μ) = h for x2. We find that

— χ2 = Κ(χ^ yu y2, h, μ) = Ko

If we take y2 = τ as a new time variable, then the functions xx = x(j) and
yl — y(r) satisfy Whittaker's equations

t? 9i dx — d K dy — a K

•""' ~~dx ~~ dy ' dx ~ dx '

For these equations the Poincare set 3S* is also dense in the half-space
χ > 0. Since the unperturbed system is non-degenerate (d2K0/dx2 Φ 0), all
the conditions of Theorem 3 in § 1 are satisfied. Thus, we may conclude
that the equations (3.2) for all values of ft < 0 do not have a first integral
2 Φθμδ with continuously differentiable coefficients in Δ χ T*{y, τ mod 2π},
where Δ is any interval on the half-line χ > 0.

We note that (3.1) and (3.2) have additional integrals in the form of
convergent power series in μ with continuous (but not differentiable)
coefficients.

2. "Let us proceed to another problem: that of the motion of a rigid body
around a fixed point ... We can, therefore, ask whether in this problem the
presented in this chapter oppose the existence of a single-valued integral
other than those of the vis viva and of area" (Poincare [48]).

To the group of symmetries, which consists of rotations of the body
around a vertical line, there corresponds a linear integral F2 = (M, e): the
vertical projection of the kinetic momentum is constant. Fixing this
constant, we reduce the number of degrees of freedom to two: on the
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four-dimensional integral levels 7 2 3 = {<M, e) = f2, <e, e> — 1} there arises a
Hamiltonian system with two degrees of freedom. Its Hamiltonian function,
the total energy of the body for a fixed value of the projection {M, e), is
H0+eHi, where Ho is the kinetic energy (the Hamiltonian function of the
integrable Euler problem on the motion of an inertial body), and eHx is the
potential energy of the body in a homogeneous gravitational force field (e is
the product of the weight of the body by the distance from the centre of
mass to the point of suspension). We assume that e is small. This is
equivalent to the study of the rapid rotation of a body in a moderate force
field. In the unperturbed integrable Euler problem we can introduce action-
angle variables / and ψ. The formulae for the transition from the special
canonical variables L, G, I, g to the action-angle variables / and φ can be
found, for example, in [32]. In the new variables Η = HQ{r)+eHx{I, φ).
The action variables Ix and /2 vary in the domain A = {\Il\ < I2, I2 ** 0}.
The Hamiltonian # 0 (A, h) is a homogeneous function of degree 2 and is
analytic in each of the four connected subdomains of Δ into which the
domain is divided by the three lines ir,, π2, and Ix = 0. The equation of the
lines π! and π 2 is 2H0/I2 = J2

l. They are symmetric relative to the vertical
axis and tend to the line lx = 0 as J2 -»• Λ and to the pair of lines I/J = I2

as J2 -» / 3 (we recall that Jh J2, and / 3 are the principal moments of inertia
of the body and Jx> J2> J3). The level lines of Ho are illustrated in Fig. 6.

rt.

Fig. 6

The expansion of the perturbing function Hx in a multiple Fourier series in
the angle variables ψχ and φ2 is, in fact, contained in Jacobi's paper [70]:

Σ 4
πιζΖ

It follows, in particular, that in this problem the sets 2J, 5B, and 5}i coincide.
When Ji > J2 > J3, the secular set consists of infinitely many lines passing
through / = 0 and accumulating at the pair of lines ir1 and π 2 . It can be
shown that Ho is non-degenerate in Δ. If Η were analytic in / throughout Δ,
then the results of § 1 would be applicable: the points 7° lying on the lines
•nx and π 2 would satisfy the conditions of Theorem 1. The difficulty
associated with the analytic singularities of the Hamiltonian function in the
action-angle variables can be overcome by considering the problem of an
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additional analytic integral on the whole integral level set 72 3. Using
Poincare's method we can prove the following result.

Theorem 1. If a heavy rigid body is dynamically asymmetric, then the
equations of rotation do not have a formal integral ~^FS^, independent of
H0 + eHx, with coefficients analytic on I23 [26].

This result gives a negative answer to a question posed by Poincare [48].

CHAPTER V

BIFURCATION OF ASYMPTOTIC SURFACES

§ 1 . Conditions for bifurcation

1. Let V be the smooth «-dimensional state space of a Hamiltonian system,
T*V its phase space and H: T*V χ R{ i}^ R the Hamiltonian function. In
the extended phase space Μ - T*V χ R2{£\ t} the equations of motion are
again Hamiltonian:

( 1 X ) x — dy ' y~~ Ox ' Ά ~ di ' l ~ oE '

where Κ = H(y. x, 1) — Ε, χ ζ. V, y 6 T%V.

A smooth surface Λ" + * c Μ is called Lagrangian if for any closed
contractible contour γ

φ y dx — Ε at
ν

(E = H(y, x, t) on Λ" + 1) is zero. Lagrangian surfaces are invariant under
the action of the phase flow of the system (1.1) [ 16]. In the autonomous
case Lagrangian surfaces Λ" C T*V are given by the condition

fydx = Q (yczAn, δγ =

ν

If a Lagrangian surface Λ" + 1 has a one-to-one projection onto D χ R{i},
D c V, then it can be represented as a graph

6S(X, t) „ . .»_ OS (X, t)

y = — Τ χ — , H(y,x,t)= ,
where i S ' : Z ) x R - * R i s a smooth function. In the autonomous case Λ" is
given by the graph

The function S(x, t) satisfies the Hamilton-Jacobi equation:

l f+^( f . ·.«)-»•
In this section we are concerned with Lagrangian surfaces consisting of

asymptotic trajectories. Naturally, such surfaces are called asymptotic.
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2. We assume that the Hamiltonian function is 27r-periodic in t and
depends on a further parameter e:H = H{y, x, t, e). Suppose that
H(y, x, t, 0) = HQ(y, x) for e = 0 does not contain the time and satisfies
the following conditions:

1) there exist two critical points >>_, x_ and y+, x+ of H0{y, x) at which
the eigenvalues of the linearized Hamiltonian system

are real and non-zero. In particular, the 27r-periodic solutions x±(t) = x+,
y±(t) = y± are of hyperbolic type.

2) if Λ+ (or Λ") is a stable (unstable) asymptotic manifold in T*V passing
through x+, y+ (or x_, y_), then Λ+ = Λ~. Hence, in particular, H0(y+, x+)z

3) There is a domain D c V containing x± and such that in T*D c T*V
the equation of the surface Λ+ = Λ~ can be expressed in the following form:
y = 350/3x, where So is some analytic function in D. It is useful to
consider the differential equation

In a small neighbourhood of x± its solution tends to x± as / -»• ±°°.
4) In D (1.2) has a doubly-asymptotic solution: xo(O "*• x± as ί -*• ±°°

(Fig. 7).

Fig. 7

The Hamiltonian system with the Hamiltonian function H0(y, x) must be
regarded as the unperturbed system. In applications it is most frequently
completely integrable. Let D+ (or D_) be a subdomain of D containing x+

(or x_) but not x_ (or x + ) . For small e the asymptotic surfaces Λ+ and Λ~
do not vanish, but go over to the "perturbed" surfaces A^ and Λ"̂ . More
precisely, in D± χ R{t}the equation of the asymptotic surface Λ | can be
written in the following form:

__ as*
y~~dT~'

where S±(x, t, e) is 27r-periodic in t and is defined and analytic for χ G D
and small e (Poincare [48]). The functions 5* must, of course, satisfy the
Hamilton-Jacobi equation
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By hypothesis, for e = 0 the surfaces Λ{> and AQ coincide. However, as
Poincare [47] first noted, in general, for small e Φ 0, regarded as point sets
in T*(D+ Π DJ) x R the surfaces no longer coincide. This phenomenon is
called a bifurcation of the asymptotic surfaces. Obviously, Λ* coincides
with Λ" if and only if (1.3) has a solution S(x, t, e) that is analytic in χ
throughout D.

3. Theorem 1 (Poincare). If Hl{y+, x+, t) = H1{y_, x_, t)and
oo

(1-4) j {Ho, Ht) (y (x0 (f)), * 0 (ί), Ο Λ ^ 0,

/or sma// e Φ 0 /7ze perturbed asymptotic surfaces Λ* a«c/ A^ rfo not
coincide [47].

/ We assume that (1.3) has an analytic solution S(s, t, e) that for small
e can be expressed as a convergent power series

S == S0(x, t) + ES,(.T, t) -f . . .

The function SQ(x, t) must satisfy the equation

Hence, So = -ht+ W(x), where h = H0(y+, x±) and W(x) is a solution of

Clearly, ^(.v) coincides with the function S0(x) by §1.2.
Let Η = HQ(y, x) + eH1(y, x, t)+... Then we obtain from (1.3) a

quasilinear differential equation for 6Ί:

(1-5) - ^ + y(x) dx ' 1 w v " ' '

Since (1.2) is autonomous, together with xo(i) it has the family of solutions
xo(t + a), a e R. It follows from (1.5) that on these solutions

(1.6) S, (x0 (t -f a), t) = Si (x0 (a), 0) - ( //, (y (x0 (t + a)), x0 (t + a), t) dt.
Ό

Without loss of generality we may assume that Ηγ{γ+, χ+, t) = 0 for all t.
If this is not the case, then instead οι Hi we must take Hx- Hx{y±, x+, t).
The Poisson bracket remains unchanged.

Since the Taylor expansion of Hi in a neighbourhood of the points x±, y±

begins with linear terms in χ - x±, y- y±, and since the functions xo(t)- x±,
y(xo(t))- y± tend to zero exponentially as t -*• ±°°, the integral

(1.7) J(a) =

converges. From (1.5) it also follows that Si(x, t) at x± does not depend
on t. By (1.6), the integral /(a) is equal to Sx(x+)- SiixJ), therefore, does
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not depend on α. To complete the proof it remains to calculate the
derivative Λ ^

dJ
da

Remark. Another proof of Poincare's theorem can be found in [6] .

4. In the autonomous case the condition for bifurcation of asymptotic
surfaces situated on a certain fixed energy level can be expressed as follows:

J

where F o is the integral of the unperturbed system. If dF0 = 0 at the points
of unstable periodic trajectories, then the integral (1.8) necessarily converges.

§2. Bifurcation of asymptotic surfaces—an obstruction to integrability

1. We consider a Hamiltonian system with Hamiltonian H(z, t, e) =
— H0(z) + eH1(z, t)+O(e2) under the assumptions of §1. In particular, the
unperturbed system has two hyperbolic equilibrium positions z±, joined by a
doubly-asymptotic solution t -*• zo(t), t € R.

Theorem 1 (Bolotin). Suppose that
oo

1) j {H0{H0,Hl}}{z0(t),t)dt^O,
- o o

2) for small e the perturbed system has a doubly-asymptotic solution
t ->• ze{t), close to t -> zo{t).

Then for small fixed values of e Φ 0, in any neighbourhood of a closed
trajectory ze{t), the Hamiltonian equation ζ = 3-ff' does not have a complete
set of independent integrals in involution.

Remark. 1) can be replaced by the following condition: for some m > 2

), t) dt Φ 0.

If 1) holds, then the asymptotic surfaces necessarily do not coincide.
2) is, of course, not always satisfied. We give a sufficient condition for the
existence of a family of doubly-asymptotic trajectories.

Let HQ = Fh ..., Fn be commuting integrals of the unperturbed problem
that are independent on Δο = Δ̂ >. If

d e t | j {F, {^, ffi» (*„ (t),
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then there exists a family, analytic in e, of asymptotic solutions t -*• ze(t).
This result is easy to derive from the implicit function theorem.

If we investigate the problem of the existence of independent involutive
integrals F,(z, t, e), \ <i <n, that are analytic (or formally-analytic) in e,
then 2) can be omitted. In particular, if 1) is satisfied, then the series of
perturbation theory diverge in a neighbourhood of bifurcated asymptotic
surfaces (Poincare [47]).

2. Using Birkhoff's method of normal forms we can find in a neighbourhood
of unstable periodic solutions z+ + O(e) a 27r-periodic in t formal canonical
change of variables ζ -»• u that carries the Hamiltonian function H(z, t, e) to
a function ^{u, e) not depending on t. Because the characteristic
exponents may be commensurable, the Birkhoff transformation may diverge.
However, in the case of one degree of freedom (n = 1) the formal series of the
change of variables ζ ->· u converge everywhere and depend analytically on e.

Theorem 2. We assume that the Birkhoff transformation converges and
depends analytically on e. If Theorem 1,1) holds, then for small e Φ 0 the
Hamiltonian equation does not have a complete set of independent analytic
integrals in involution.

In particular, 1) is for η = 1 a sufficient condition for integrability (Siegel
[22]).

Proof of Theorem 2. We define a function R* on AQ by the formulae
00 0

R + ( z ) = - \{H0{H0, H{))(z{t),t)dt, R"(2)= j {Ηΰ{Η0,Η,}}(ζ(ί), t) dt,

ο — °°
where t -> z(t) is t h e asymptot ic m o t i o n of t h e u n p e r t u r b e d system with t h e
initial condition z(0) = z.
Lemma 1. The functions R* are defined by Ho, the family of surfaces Λ*,
and the canonical structure.

For according to the results of the previous section, the functions
+ 00

S+ (z) = _ ε [ (Hi (z (t), t) - Hx (z+, f)) dt,
Ό

ο

5"(ζ) = ε j (Hi(z(t),t)^Hi(z_,t))dt
— oc

are generating functions of the Lagrangian surfaces Λ* up to 0(e2). But
eR* = {H0{H0, S±}}, as required.

The composition of the Birkhoff transformation with the powers of the
map at a period allow us to extend H± from neighbourhoods of critical
points w±(e) up to certain neighbourhoods W± of the asymptotic surfaces Λ|.
Since a possible bifurcation of the surfaces Λ^ and Λ^ is of order e, for
small e the neighbourhoods W+ and W- intersect.
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Lemma 2. {77+, Η~) φ Ο for e Φ 0.

Proof. We put Η*(μ, e) = H^(u) + eHf(u) + O(e2). Since Ηξ(μ) = 770(w),

{77+, H-) = e{II0, Hl-H$ + O(E*).

Since A^ is an invariant asymptotic manifold of the Hamiltonian system
u =3770, by Lemma 1,

ο
= J {770{770, H-1}}(u0(t))dt = R-(u), ueA~0.

_ oo

Similarly

{/70, 77+} (u) = j {/70 {//0, 77ί)} (u0 (i)) cZi ~1V (u), u 6 Λ
ο

Consequently

{tf+, i7"} = ε j {# 0 {#„, II,}} (s0 (i), i) di + Ο (ε-).

According to 1), for small e Φ 0 the Poisson bracket {//+, 7/"} ^ 0.
In the new variables u the integrals F1( ..., F n do not depend on i. For

e Φ O\et Fv .... Fn be independent integrals at some point of W+ η W—
Since {77±, 77

;} ^ 0, 377±'is a linear combination of the 3 F | . Since
{/'';, 7'̂ ·} ̂  0, obviously, at this point {77+, 77"} 0. To complete the proof
it remains to remark that the analytic function {77+, 77~} does not vanish on
an everywhere dense set.

3. Theorem 3. Let η = 1. If

{770, Ht}(z0 (ί),1)άίφθ,

2) for small e the perturbed system has a doubly-asymptotic solution
t -* ze(t) close to t -> zo(i), then for small e Φ 0 the Hamiltonian system
ζ = 377' does not have an additional analytic integral [65].

Proof. We consider the map at a period g of the section t = t0 into itself.
For small e this map has two fixed hyperbolic points z t and z 2 with
invariant separatrices W* and W| (see Fig. 8). By the conditions of the
theorem, for e Φ 0 the separatrices W\ and ̂ 2 intersect and do not coincide.

Fig. 8
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Let V be a small neighbourhood of zx and Δ a small segment of W2
intersecting W\. For sufficiently large η the segment g"(A) lies wholly in V
and again intersects W*. By a theorem of Grobman-Hartman [44], in V the
map g is topologically dual to a linear hyperbolic rotation. Consequently,
as η -*• °° the segment g"(A) "stretches" along the separatrix W\ and
approaches it unboundedly. Obviously, the union

00

(2.1) U «"(Δ)
n = l

is a key set for the class of functions that are analytic in the section t = t0.
Suppose now that the Hamiltonian equation has an analytic integral

f(z, t). The function f(z, t0) is invariant under g and constant on W2 (since
the sequence g"(z), ζ e W2, converges to z2 as η -*• °°). Consequently, the
analytic function f(z, t0) is constant on the set (2.1) and is therefore
constant for any t0.

Remark. Poincare divided the doubly-asymptotic solutions into two types:
homoclinic (when z + = z_) and heteroclinic (when z+ Φ z_). If η — 1, then
for small e the perturbed problem always has homoclinic solutions (if, of
course, it has them for e = 0) [47].

§3. Some applications

1. We consider first the simplest problem of the oscillations of a pendulum
with a vibrating point of suspension. The Hamiltonian function Η is
Ho + eHi, where

^0 = P2/2 — ω2 cos x, H1 — — ω""/(ί) cos x,

and f{t) is a 27r-periodic function of time. When e = 0, then the upper
position of the pendulum is an unstable equilibrium. The unperturbed
problem has two families of homoclinic solutions:

οβ±ω(ί-ί0)

(3.1) c o s - y o = e jr 2 t u (,. t o ) + r xo^±n as t-+ ± 00.

Since {//0, //j} — —ω-/(ί)χ sin x, (1.8) to within a constant multiplier is
equal to

00

\ f (t) cos x0 dt.
— σο

Let f(t) = 2 Λ.6"1'- Then (1.8) can be expressed as a series

n£Z -oc ^

The integrals Jn are easily calculated by residues:

τ -
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Consequently, if fit) Φ const (that is, /„ Φ 0 for some η Φ 0), then (1.8) is
non-zero on at least one doubly-asymptotic solution of the family (3.1).
Thus, if fit) Φ const, then by the results of §2 this problem for sufficiently
small (but fixed) e Φ 0 does not have an analytic first integral F(p, x, t)
that is 27r-periodic in χ and t.

2. In the problem of rapid rotation of an asymmetric rigid body the
Hamiltonian is Η = H0+eHu where

Ho = 4- {AM, M), Hi = riei + r2e2 -f r3e3; A = diag (a l t o2, a3).

The numbers ah a2, a3 are the inverses of the principal moments of inertia
of the body. For e = 0 we have an integrable Euler system. In this
"unperturbed" problem on all noncritical three-dimensional levels 7 1 2 3 =
= {Ft = Ho = f1 > 0, F2 = f2, F3 = 1} there are two unstable periodic
solutions: if ax <a2 <a3, then

Μj = Μ s = 0, M2 = M\ = ± V'2/,/a2, e2 = e° = ± //M·

e i = acos(a2M°)i, e3 = asin (ο2Λ/·)ί; ο* = 1 - (

Since <Λί, e>2 < <Λί, MXe, e> and since the functions Flt F2, F3 are
independent on 7123, it follows that a 2 > 0. The stable and unstable asymptotic
surfaces of the periodic solutions (3.2) can be represented as the intersections
of the manifold 7 1 2 3 with the hyperplanes Miy/ia2- αλ) ± My^/ia^- a2) — 0. In
the Euler problem the asymptotic surfaces are "doubled": they are
completely filled out by doubly-asymptotic trajectories, which as t -> ±°°
approximate unboundedly to the periodic trajectories (3.2). The bifurcation
of these surfaces was studied in [28], [22]. It turned out that on
perturbation the asymptotic surfaces bifurcate always except in the "Hess-
Appelrot case":

(3.3) r2 = 0, rjV a3 — a2 ± r

In this case one pair of separatrices does not bifurcate, and the other does
(Fig. 9). The reason for non-bifurcation is that under the condition (3.3)
the perturbed problem, for all e, has the "particular" integral
F = Mis/(a2- fli) ± Mjy/ia^ a2) (F = 0 when F = 0). It can be shown that
the closed invariant surfaces Η = fit F2 = f2, F3 = 1, F — 0 , for small e
are just a pair of doubled separatrices of the perturbed problem (see [28]).

In the problem of rapid rotation of a heavy asymmetric top the bifurcated
separatrices apparently do not always intersect. However, Theorem 2 of §2
is applicable, and with its help it can be established that there is no

Fig. 9
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additional analytic integral of the perturbed problem for small, but fixed, e
(Siegel [22]).

The behaviour of the solutions of the perturbed problem has been studied
numerically in [67]. In Fig. 10 the results of the calculations for various
values of e are shown. It is fairly clear that the picture of the invariant
curves of the unperturbed problem begins to be destroyed exactly in the
neighbourhoods of the separatrices.

1,0 1.0F7

0,0 { [ \
/ •·•'•"''•-.:

-/ill· ,-...,..••,.
ο ?,

0,0

Η -1,0
Β ΰ
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0,0

1,0

"... .•:.·:'·?•' . . · ·

·• ••• .· .'''

-1,01:
0 2 4-

c) e = 0.5

-1,0

~\ . . ι . . . I , — — I , . "

d) e = 1
Fig. 10

3. We now consider the Kirchhoff equations

(3.4) am tie

^~ {AM, M) + {BM, e) + j (Ce, e),

which describe the rotation of a rigid body in an ideal fluid. The matrix
A = diagOzj, a2, a3) is diagonal and Β and C are symmetric.

Theorem 1. Suppose that ah a2, and a3 are unequal. If the Kirchhoff
equations have an additional integral independent of the functions Fi = Hh

F2 = (M, e), F3= (e, e) and analytic in R6{M,e}, then Β = diag(&1; b2, b3)and

(3.5) a"1 (b2 - b3) + a;1 (b3 - bj + a;1 (b, - b2) = 0.
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If Β = 0, then the independent analytic integral exists only when
C = diag(c1; c2, c3) and

(3.(1) «;1(''2-C3) + a; l (c3-c 1 ) + aI1(ci-C2) = 0.

The matrix Β in Steklov's integrable case is defined precisely by the
condition (3.5), and (3.6) gives Clebsch's integrable case. It is interesting to
note the coincidence that (3.5) and (3.6) are of the same form.

Corollary. In general, the Kirchhoff equations are non-integrable.

The proof of Theorem 1 is based on the phenomenon of bifurcation of
the separatrices. We introduce a small parameter e in (3.4), replacing e by
ee. On the fixed integral level 7 2 3 = {F2 = f2, F3 = / 3 > 0} the equations
(3.4) are Hamiltonian with H0+eH1 + e2H2, where i/ 0 >#i a n d H2 are the
functions (AM, M)/2, (BM, e), and (Ce, e)/2 on / 2 3 . This is equivalent to
the case when the constant energy /\ is much larger than f2 and / 3 . For
e = 0 we have again the integrable Euler problem on the motion of a free
rigid body under inertia.

Let Fo be an analytic integral of the Euler problem. If the improper integral

(3.7) J= j

calculated along solutions of the unperturbed problem that are asymptotic
to periodic solutions (3.2), is not constant on the separatrices of the Euler
problem, then by Theorem 2 of §2, for small e Φ 0 the Kirchhoff equations
do not have on 7 1 2 3 a non-constant analytic integral.

The proof of Theorem 1 thus reduces to the verification that the integral
(3.7) is not constant in which it is convenient to put F o = (M, M)/2. When
Β = 0, then, of course, in (3.7) we must take H2 instead of Ηλ. If
Fo = (Μ, Μ >/2, then / exists only in the sense of the principal value. In this
case we can put, for example, Fo = ((Μ, Μ )—α~2

ί(ΑΜ, Μ >)/2.
As an example we obtain the Steklov condition (3.5) in the simplest case

when Β = diag(&!, b2, b3). Since

{Fo, //,} = (6, - b2) (MjAf2β, + Μ{Μ3βζ) +

+ (6, - 63) (Af aAf,e, + A/,M2e3) + (δ»-Λ) (MiM3ei !- Λ/,.Ι/,*,),

we see that

/ = (&3 — b2) (Jm + Ji32) + (6, — 63) (/231 + Jm) -t- (b2 — i't) (/132 -t- / 2 3 1 ) ,

where

= \

The integrals Jijk satisfy the following linear equations:

\23 "Γ
(3.8) { aiJi23 — a 3 / 2 3 1 + (a{ — a3) / 1 3 2 = 0,

2 ~ ai) 1̂23 = 0·
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Let us derive, for example, the first relation. From Kirchhoff's equations
for e = 0 it follows that

(Λ/,βί)· = a3M^M3e — a2M^f2e3 + (a3 — a2) M2M3e^.

Since Ml -* 0 as t ->• ±°°,

a3Ji32 — a2Ji23 + (a3 — a2) I23i = J (M^iY dt = 0.
— oo

If a2a3- αλα2- αλα3 Φ 0, then from (3.8) we obtain the two equalities
r 0.^3 — a

x
a

2
 — a

2
a

3 T T
 α
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α
ϊ
 — a

t
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3
 — a

2
a
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lii l lai

 a
2
a

s
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2
— a

±
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The integral J231 can be calculated by means of residues and it can be
verified that it is non-zero (Onishchenko). If (3.5) is not satisfied, then
/ Φ 0 by the obvious equality

./ (ata2 + a^a3 — α 2α 3)/2α 1α 2α 3/ 23 1 = α"1 (b3 — b2) + C 1 (bl — b3) -\- a;1 (bz — bt)

consequently, the perturbed separatrices are bifurcated. When
a2a3- αλα2- αχα3 — 0, then / is proportional to Jl23 or Jl32. By arguments
of symmetry and the preservation of the measure on I123 generated by the
standard measure on R6, it follows that the perturbed separatrices intersect.
Hence, the Kirchhoff equations are non-integrable on the invariant manifolds
/123 and, in particular, on the whole phase space R6.

If (3.5) (or (3.6) for 5 = 0) does not hold, then one of the pair of
separatrices of the Euler problem must bifurcate under perturbation. It is
interesting to note that with a suitable choice of Β and C one pair of
separatrices remains doubled and the other is bifurcated. For example,
suppose that 5 = 0 and that the elements of the symmetric matrix C satisfy
the following conditions: c12 = c23 = 0,

— ai ci3 ±V a3 — a2 (c22 — cH) = 0,

— αί (c33 — c22) + Υ a3 — a2 ci3 = 0.

Then for all e the Kirchhoff equations have a "Hess-Appelrot particular
integral" F — Μχ\/{α2~ α{) ± Μζ\/(α3- α2). For small e the separatrices of
the Euler problem I123 f] {F = U) remain separatrices of the perturbed
periodic solutions (3.2).

4. By the method of bifurcation of asymptotic surfaces one can establish
non-integrability of the problem of the motion of four-point vortices [21].
More precisely, we consider this problem in a restricted formulation: a
vortex of zero intensity (that is, simply a particle in an ideal fluid) is moving
in the "field" of three vortices of unit intensity. It turns out that the
equation of motion of the zero vortex can be expressed in Hamiltonian form
with a Hamiltonian that is periodic in time: these equations have hyperbolic
periodic motions with intersecting separatrices. Therefore, the restricted
problem of four vortices is not completely integrable, although (as in the
unrestricted formulation) it has four independent integrals.
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§4. Isolation of the integrable cases

1. When a Hamiltonian system depends on a parameter, then in a typical
situation the integrable cases correspond to exceptional isolated values of the
parameter. The proof of the isolation of the integrable cases in concrete
problems may turn out to be a very difficult matter. We investigate this
question for the Hamiltonian equation

m ·

(4.1) χ + ω2{1 + ε/(ί)} sin χ = 0 (ω, ε = const),
which describes the oscillations of a mathematical pendulum. The analytic
function fit) is taken to be non-constant and 27r-periodic in t e R. For
e = 0 (4.1) is integrable and for small e Φ 0 it does not have an integral
that is single-valued and analytic in the extended phase space
C {χ, χ mod 2π} χ Tx{t mod 2n}(see §3). It will be shown below that this
equation is integrable only for a finite set of values of e in the interval
[-a, a], where α = l/max R \f(t)\.

For all e £ [-a, a] the periodic solution x(t) = π (or, what is the same,
x(t) = -π), the vertical oscillations of the inverted pendulum, is hyperbolic.
To prove this we put χ — ττ + y. Then the equations in variations of the
periodic solution x(t) = π are

V - P(t)U = 0, p(t) = ω2(1 + ε/(ί)).

Since pit) > 0 and pit) ψ 0, the multipliers of this solution are positive, one
of them being larger than 1, the other smaller than 1 (Lyapunov). Thus, the
solution x(t) = π is, in fact, hyperbolic. It has two two-dimensional
asymptotic surfaces A1" and Λ", completely filled out by trajectories that
approximate unboundedly to the points χ = ±ττ as t -*• ±°°. Since the
Hamiltonian Η is analytic, Λ+ and Λ" are regular analytic surfaces in C χ Τ1,
depending analytically on e.

It turns out that the surfaces Â  and A^ intersect for all e € (-a, a). This
result, obviously, is equivalent to the existence of a homoclinic solution x(t)
(x(t) -> ±π as t •+ ±°°). A proof can be derived, for example, from the
following general result.

Theorem 1. Let (M, T, IT) be a natural mechanical system where Μ is
compact, the metric Τ does not depend on time, but the potential energy
U:M χ RU}-* R is periodic in t. If U(x, t) < U(x, t0) for all χ Φ χ0 and
( e R, then there exists a doubly-asymptotic {homoclinic) solution x(t) such
that x(t) -* xoas t -»• ±°° [10].

In our case Μ = S\ Τ = χ212, and U = -ω 2(1 + e/)(l + cos x). If
-a <e <a, then U(x, t) < U(it, t) for all 0 < χ < 2π and all t.

Since the surfaces A"̂  and A^ do not coincide for small e Φ 0, the values
of e, I e I < a + δ(δ > 0), for which A+

e = ATe, are isolated. Since for I e l < a
the surfaces A"̂  and Λ̂  intersect, (4.1) is integrable only for isolated values
of e.
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2. We now give an example of a Hamiltonian system that for everywhere
dense sets of values of the parameter is both completely integrable and non-
integrable. Thus, the integrable cases are not always isolated.

We consider in R{y}xTz{x, t mod 2ji}the canonical equations

ι A 9\ ' — dH ' — 1IL
^•l) y - ~ΊΓ>

 x ~~~w
with the Hamiltonian function Η = ey- f(x, t), where e e R, e > 0, and
fix, t) is a 27r-periodic analytic function of χ and /.

We write (4.2) in the explicit form

(4.3) i = e, y = -§-=F(x, t).

These equations obviously are integrable by quadratures:
t

χ = εί + χ0, y = yo-\~ \ F(es + x0, s) ds.
ϋ

We search for a first integral of (4.2) in the form y + g(x, t), where
g:T2 ->• R is an analytic function, which must satisfy the equation

(4.4) t + ^—H^t).
Let

F =--• Σ ^
Then

a ^_ Fmn
6 m n i(me-\-n) '

Since
1) I Fmn | < ce-p<i™l+i"i>, c, ρ > 0 (F: T2 -> R is analytic),
2) for almost all e (in the sense of Lebesgue measure on R)

the series rJ mn ei(mx+nt)
i (roe — /ι)

represents an analytic solution of (4.4). Consequently, the canonical
equations (4.2) are almost always integrable.

We claim that for a suitable choice of f(x, t) the equations (4.2) are non-
integrable for an everywhere dense set of e: in these cases the equations (4.2)
have solutions that are everywhere dense in the extended phase space R χ Τ2.

The proof is based on a certain ergodic property of "cylindrical
cascades". Let T:C -> C (C = S1 χ R) be the map given by the formula
T(x, y) = (x + e, y + h(x)), where ε/2π is irrational and h(x) is a 2w-periodic
function with zero mean value:

2π

[ h{x)dx = 0.
δ

The cascade {Tn} is called ergodic if the sequence of points T"(a), η e N,
is everywhere dense in C for some a e C.
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Theorem 2 (Krygin). Let ε/2π be an irrational number such that the inequality

m
η

2π

has infinitely many integral solutions. Then for some analytic function h{x)
the cylindrical cascade T{x, y) = (x + e, y + h{x)) is ergodic [35].

We note that the irrational numbers e satisfying the conditions of
Theorem 2 are everywhere dense in R.

Naturally connected with (4.3) is the periodic map
2n

(4.5) Τ: χ-+χ + ε/2π, y-+ y + ij F (ε.ν-f x, s)ds.
Ό

Since the function
2 π

(4.6) h(x)= \ F(es-j-.r, s)ds
ο

is 27r-periodic in χ and its mean
ι 2n 2rr

h(x)dx= \ ( F(x, s)dxds = 0,
U 0 *0

(4.5) generates a cylindrical cascade.
Choosing f(x, t) suitably we can obtain an arbitrary analytic function

F(x, t) up to a 27r-periodic term φ{ΐ) with zero mean. However, the
addition of φ(ί) has no influence on the map (4.5).

It seems that a stronger result might hold: for some / : T2 -*• R there exist
sets Μω, Moo, ..., Mk, ..., Mo, Mc, everywhere dense in R, such that for
e e Μω the equations (4.3) have an analytic integral, for e e M« there is a
smooth integral but not an analytic first integral, ..., for e e Mk there is an
integral of class Ck, but no integrals of class Ck+l, ..., for e e M0 not even
continuous integrals. Thus, we have proved that Μω and Mp are everywhere
dense in R.

We note in conclusion that the equations (4.3) were first studied by
Poincare in [46].

CHAPTER VI

NON-INTEGRABILITY IN THE NEIGHBOURHOOD OF A POSITION OF EQUILIBRIUM

§1. Siegel's method

We consider a canonical system of differential equations

and assume that Η is an analytic function in a neighbourhood of χ = y = 0,
where H(0) = 0 and dH(Q) = 0. Let Η = 2 Η,, where Hs is a homogeneous
polynomial in Λ: and y of degree s. s ? s 2 '
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Let Xu ..., \2n be the eigenvalues of the linearized canonical system with
the Hamiltonian H2. We may assume that \n+k = -Xk (1 < k < ή). We
consider the case when the numbers λ1 ; ..., λη are purely imaginary and
independent over the field of rational numbers.

In this section we investigate the complete integrability of the equations
(1.1) in the neighbourhood of the equilibrium position χ = y = 0 and the
convergence of the Birkhoff normalizing transformation.

1. We consider the set £j of all power series

Η = 2 hhsx
hy\ k = (* l t ..., k n ) , s = (*„ ..., sn).

that converge in some neighbourhood of χ = y = 0. We introduce the
following topology .Γ in <y. a neighbourhood of a power series H* with
coefficients h*ks is the set of power series with coefficients hks for which
l^fcs" hks\ < efci, where eks is an arbitrary sequence of positive numbers.

Theorem 1 (Siegel). In any neighbourhood of any Η* ζ .0 there is a
Hamiltonian Η such that the corresponding canonical system (1.1) does not
have an integral independent of Η and analytic in a neighbourhood of
χ = y = 0 [19].

Thus, integrable systems are everywhere dense in iq. In particular, the
Hamiltonian systems for which the Birkhoff transformation diverges are
everywhere dense. Concerning the divergence of the Birkhoff transformation
there is a stronger result.

Theorem 2 (Siegel). The Hamiltonian functions Η with convergent Birkhoff
transformation form a subset of the first Baire category in the topology • ̂
on S3 [20].

More precisely, Siegel proved the existence of a countably infinite set of
analytic independent power series Φ ΐ 5 Φ2, ..., in infinitely many variables hks,
that are absolutely convergent for \hks\ < e (for all k, s) and such that if
Η 6 β is reduced to normal form by a convergent Birkhoff transformation,
then at this point almost all Φ^ (except possibly finitely many) are zero.
Since the functions Φϊ are analytic, their solutions are nowhere dense in jg.
Consequently, the set of points of ife satisfying at least one equation Φ^ = 0
is of the first Baire category. If we attempt to investigate the convergence
of the Birkhoff transformation in any concrete Hamiltonian system, then we
must check infinitely many conditions. There is no known finite method
for this, although all the coefficients of the Φ5 can be calculated explicitly.

2. Using Siegel's method we can prove the density of non-integrable systems
in certain subspaces of £j. As an example we consider the equation

(i.2) * = — I T » χίΗ">
which describes the motion of a material point in a force field with
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potential U(x). This equation, of course, can be written in Hamiltonian form:

(1.3) ^ = 4f"' Ρ = - ΐ ; H = pV2+U(x).
Let C/(0) = 0 and dU(0) = 0. Then the point χ = 0 is a position of
equilibrium. We put U — Σ U* a n d l e t £̂ 2 = Σ ω^|/2. We assume that

>2
the frequencies of small oscillations ω1 ; ..., ω η are rationally independent.

We introduce the space U of power series

Σ
|ft|2

that converge in some neighbourhood of χ — 0. We equip U with the
topology 5" of §1.1. In §1.3 we shall prove the following theorem
(modulo a certain lemma of Siegel).

Theorem 3. In tl wiY/j the topology SF the points for which the equations
(1.2) do not have an integral F{x, x) that is analytic in a neighbourhood of
the point χ = χ = 0 and independent of the energy integral Ε = x2/2+ U{x)
are everywhere dense.

It seems that the points U 6 U for which the Birkhoff transformation to
normal form converges, form a subset of the first category in U.

3. For simplicity we restrict ourselves to the case of two degrees of
freedom (w = 2). Let ωχ = 1 and ω 2 = ω be irrational.

We consider a canonical equation with Hamiltonian function of the
following form:

(1.4) H = i{xiyl + (oxiy2)+ Σ

The coefficients hpq may be complex.
Let epq < 1 be an arbitrary sequence of positive numbers and ω an

irrational number that can be approximated by rationale sufficiently well:
the inequality

(1.5) 0<\r-as\<~, p = (r, 0) <? = (0, s)

must have infinitely many solutions in natural numbers r and s. The
measure of the set of such numbers is zero, however, they are everywhere
dense in R.

Since ω is irrational, by Birkhoff s theorem (Ch. II) the canonical
equations with the Hamiltonian function (1.4) have a formal integral

F(x, 2/) = Σ

Lemma 1. In an epq-neighbourhood of each function (1.4) there is a point
Η such that for the integers r, s in (1.5) the coefficients frOOs admit the
estimate
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Corollary. The set of points Η for which the Birkhoff transformation
diverges is everywhere dense.

Proof of the lemma. Let F — Xiyi+ZjF,, where F, is a homogeneous
polynomial degree / > 3. The series F formally satisfies the equation

2

Σ / OF OH OF dH \ = 0

\ dxh dyk dijk dx^ 1

Equating the terms of the l-th. order to zero we arrive at an equation for Ft:

p+q=l

where the right-hand side is some multinomial of degree / whose coefficients
can be expressed in terms of the coefficients of the multinomials F3, ..., F^x
and hpq for ρ + q < /. For the terms /rooŝ Ii/a of Fl we obtain the equation

(M) froos(r — ass) + irhrOOS = grOOI.

Finally, grOOS can be expressed in terms of the coefficients hpq for
p + q <l. Now let r and 5 be natural numbers satisfying (1.5). The
coefficients hrOOs can be changed by not more than e r O O s, so that
I irhroos — groos I ̂  e r 0 0 s . Then by (1.5) and (1.6) we have the required
estimate

\fr00s\>Ss*.

It is important to note that for the construction of the "perturbed"
Hamiltonian function Η we have "varied" only the coefficients of the form

We denote by I F,\ * the maximum of the absolute values of the coefficients
of the form Ft.

Lemma 2 (Siegel). Suppose that the canonical system
dH * dH t l J ^,

has a converging integral not depending on H. Then the sequence

is bounded [19].

In our case loglF fcl, > s2log s if k = r + s. From (1.5) for e < 1 we have
an estimate for r: r < cos+ 1. Consequently, the sequence

logl Fr+S | «

is unbounded as s -> °°.
We return to the analysis of the canonical equations (1.3). In this case
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We make a linear canonical change of variables with complex coefficients:

In the new variables Η = Η2 + Η*, where

The coefficients hpq of the terms ξ ρη ? are linear in the uk, and
Γ θ 0 · -

By varying the coefficients urs in the expansion of the potential energy U(x),
we vary, consequently, the required coefficients hr00s.

§2. Non-integrability of systems depending on a parameter

1. Let χ = y — 0 be a position of equilibrium of an analytic Hamiltonian
system with the Hamiltonian function

H(z, y, ε) = Ηζ + Η3+ . . . , (*, y) € i?2", e i u c f i " .

We assume that for all e ε D the frequencies of the linear oscillations

ω ( ε ) = (ωχ(ε), . . ., ωη(ε)) do not satisfy any relation

(m, ω) = πι1ω1 + . . . + πιηωη = |0

of order I m11 + ... + I mn I < m - 1. Then we can find a linear transformation
x, y -> p, q that is analytic in e and such that in the new coordinates

where Pi = p\ + ql-
We now pass to canonical "action-angle" variables /, φ by the formulae

/, = μ,72, φ; = arctan jOf/gf (1 ^ i ^ n).

In the variables /, φ

Η = Η2{1, ε) + . . . + #„,-!(/, ε) + Hm{I, φ, ε) + . . .

We express the trigonometric polynomial Hm as a finite Fourier series:

Theorem 1. We assume that (k, ω(ε)) s#= 0 /or a// k Ε. Ζ", k Φ 0. Suppose
that for some e0 e D the resonance relation <k0, ω(εο)> = 0, \ko\ = m and
Λ',™'(7, ε) -φ 0, is satisfied. Then the canonical equations with the Hamiltonian
Η = 2 Ht d° n o t n a v e a complete set of (formal) integrals Fj = 2
whose quadratic parts are independent for all e e D [27]. s^2

We note that under the conditions of the theorem there may be
independent integrals with dependent (for certain values of e) quadratic
parts in their MacLaurin expansions. Here is a simple example:
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the canonical equations with the Hamiltonian

Η = -1 {x\ + y\) +-γ(χ\ + y\) + 2xiyiy2 + x2y\ + x\xz

have the integral F - xj+yj+ 2(xf+ >Ί), which for e = 2 depends on the
quadratic form H2> however, all the conditions of the theorem are satisfied.

Theorem 1 is proved by Poincare's method. First we prove a simple
auxiliary result.

Lemma. Let Φ(Ι, φ, e) be an analytic function in all the variables Ι, φ, e
and 2n-periodic in φ. If{H2, Φ} Ξ= 0, then Φ does not depend on φ.

For let

Since

{#2- Φ} = Σ*<*. ω(ε))Φ,(7, e) i ' i*-"sO

and < k, ω(ε) > ψ 0 for k Φ 0, we see that Φ,((/, ε) Φ 0 only when k — 0.
Let F(x, y, e) =^FS{I, φ, e) be a formal analytic integral of the canonical

equations with the Hamiltonian H. From the condition {H, F) == 0 we
obtain the series of equations
{//2, F2) = 0, {//2, F3} +{//3, F2} = 0, . . .

. . ., {H2, Fm) + . . . +{Hm,F2) = 0 , . . .

We claim that F2, .... Fn^x do not depend on ψ. For F2 this has already
been proved in the lemma. Since H3 does not depend on φ, {IJ3, F2} = 0 ,
therefore {H2, F2) = 0. According to the lemma F3 also does not depend
on φ, and so on. Taking account of this remark the equation for Fm can be
written in the following form:

{H2,Fm}+{Hm,F2} = 0.

Ρτη^Σί(™(Ι, ε) «'<*•'>,
then

(ω (ε), k) /Γ' - (—'-, k) h\r *k f Zn.

We put k = AO1 ε = ε0. Then (ω, k) == 0 and ?4m; Φ 0. Consequently,

If our equations have η integrals Fv ..., Fn then for ε = ε0 we obtain the η
linear equations

(if:, ,„
Since k0 Φ 0, the quadratic formsi^1' , . . ., F'™ are dependent for L = ε0 as
required.

Although the proof of the theorem is simple, its use in concrete problems
is beset by rather cumbersome calculations associated with the normalization
of the Hamiltonians.
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2. As a first example we consider the problem of the rotation around a
fixed point of a dynamically symmetric rigid body (/t = J2), whose centre of
mass lies on the equatorial plane of the ellipsoid of inertia [27]. The
majority of the integrable cases occur among this kind. The units of
measurement of mass and length can be chosen so that Jl = J2 — 1 and the
parameter e, the product of the weight of the body by the distance from
the centre of mass to the point of attachment, is also 1. The natural
parameter in this problem is the moment of inertia / 3 .

In all integral manifolds / 2 3 = (/ω, e) = f2, (e, e) = 1 the reduced
Hamiltonian system has two positions of equilibrium; they correspond to
the uniform rotations of the body about the vertical axis in which the
centre of gravity lies above (below) the point of suspension.

The angular velocity ω of such a rotation is connected with the area
constant/2 by the simple relation f2 = ±/ 3 ΙωΙ. Let us consider, to be
definite, the case when the centre of mass is below the point of suspension.

In a neighbourhood of this equilibrium position the Hamiltonian function
Η of the reduced system with two degrees of freedom has the form
H2 + H4+... (terms of degree 3 are missing). The coefficients depend on two
parameters χ — f2, y = /3 1 . It can be shown that the characteristic roots of
the secular equation are purely imaginary if y > x/{x+ 1). We denote by Σ
the subdomain of R2{x, y}, where this inequality is satisfied. The ratio of the
frequencies is 3 when the parameters χ and y are connected by the relation

I: — 82xy + 9z/2 + 118a; — 82y + 9 = 0.

This is the equation of a hyperbola: its branches for χ > 0, y > 0 lie
wholly in Σ.

From the triangle inequality for moments of inertia {Jx + J2 > /3) it
follows that y > \. For any fixed y0 > \ there is an x0 such that (x0, y0)
satisfies /. The condition of the vanishing of the coefficient Mf-3 in the
expansion of ΗΛ can be reduced to the following form:

II: 9a:'' — i0xsy + x2y" — 17a;3 + 58a;2i/ — Ixy" —

— 375a;2 — 86xy - 170τ/2 + 541a; + 17(% - 1530 = 0.

Fig. 11
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The algebraic curves I and II intersect in two points (4/3, 1) and (7, 2),
which correspond to the integrable systems of Lagrange (Jl = /3) and of
Kovalevskaya (/x = 2/3) (see Fig. 11).

3. Next we consider the planar circular restricted three-body problem. The
equations of motion of an asteroid in a system of coordinates rotating with
the Sun and Jupiter can be written in the Hamiltonian form:

on · an , , 0.

* . = - ^ . y»=—wt ( s = 1 · 2) ·
Η = ~(yl-Jryl)Jr X2yi—Xiy2 — F (xi^ *2> μ),

This Hamiltonian system has equilibrium positions at the points xl = ̂ - μ,
x2 — ±γ/3/2, >Ί = y2 — 0, which are called the Lagrange solutions or
triangular libration points (see Ch. I). If 0 < 27μ(1 - μ) < 1, then the
eigenvalues of the linearized system are purely imaginary and distinct; their
ratio is a non-constant function of μ. In cases when commensurability of
the third and fourth order holds, the coefficients h'fc and h\l'3 have been
calculated by Markeev in an investigation of the stability of the triangular
libration points [37]. These numbers are non-zero. It would seem that the
same is true for all (or almost all) resonance ratios. From the theorem in
§1.1 it follows, in particular, that in a neighbourhood of a libration point
there is not even a formal Birkhoff normalizing transformation that is
analytic in μ. "...it is so far unknown whether or not the differential
equations of the restricted three body problem with fixed mass ratios can be
reduced to normal form by a convergent transformation in a neighbourhood
of the Lagrange solutions" (Siegel [20]).

CHAPTER VII

BRANCHING OF SOLUTIONS AND THE ABSENCE OF SINGLE-VALUED INTEGRALS

be a complex symplectic analytic manifold (the whole of Μ is
covered by a set of complex charts from C2"!^, q), where the transition maps
from chart to chart are invertible holomorphic canonical transformations).
Any complex analytic function H(p, q, t):M2" xC-*C gives a certain complex
Hamiltonian system

dp dll dq _ dH
dt dq ' dt dp '

It is natural to consider for this system the problem of the existence of
additional holomorphic (or, more generally, meromorphic) first integrals. In
the majority of integrated problems of Hamiltonian mechanics the known first
integrals can be extended to the complex domain by a change of the canonical
variables to certain holomorphic or meromorphic functions. In this chapter
we show that branching of solutions of Hamiltonian systems in the complex
time plane, in general, prevents the appearance of new single-valued integrals.
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§1. Branching of solutions—an obstruction to integrability

Let £>C;5 - { / e C " : R e / e f l c R", IIm / Κ δ}, where Tg = 0"/2πΖ" is
the complex torus (over R this is Τ" χ R") with complex angle coordinates
φι, ..., φη mod 2ττ, and Ε is a neighbourhood of zero in C. Let H(I, φ, e) :
-Oc,s x T c x i i - ^ C b e a holomorphic function taking real values for real
values of /, φ, e, and Η{1, φ, 0) = Η0(Γ).

The direct product Dc,s x TQ is equipped with the simplest symplectic
structure in which the Hamiltonian equations with the Hamiltonian Η have the
canonical form:

All solutions of this system with Hamiltonian Ho are single-valued in the
complex time plane i e C :

7 — 7 " , φ = φ" -f-

For e Φ 0 the solutions of the "perturbed" equation (1.1), generally
speaking, are no longer single-valued. Let 7 be a closed contour in the
complex time plane. According to a theorem of Poincare, the solutions of
(1.1) can be expanded in power series

" = /° + ε/1 (f) -|- .. ., φ = φ° + ωί + εφ1 (f) + . . . ,

Ί (0) = . . . = φΐ (0) = . . . = 0 ,

that converge for sufficiently small values of e if t e 7 ([48], Ch. II; [13]).
We say that an analytic vector-valued function /(/), t € C, is not single-

valued along 7 if it undergoes a jump Δ/ = £ Φ 0 on a circuit of 7. If, for
example, the function I\t, 7°, φ°) is unbounded along 7, then for small e
the perturbed solution (1.2) is also unbounded along 7. The jump Δ/1,
obviously, is equal to

Ρ = \ φ (ί) dt, Φ (t) = -
J Off JO, φθ+ω(/θ)(

If for fixed / the function Ηχ{1, ψ) is holomorphic in T&, then, of course,
ξ = 0. However, in important cases in practice this function has a singularity
(say, a pole). Therefore, we regard H(I, φ, e) as holomorphic only in a
domain £>c,6 x Ω χ Ε, where Ω is a connected domain in T£, containing the
real torus TR and the closed contour Γ, the image of 7 under the map
φ = φ°+ ω(Ι°)ί, t e 7.

We fix the initial data J°, φ° and deform 7 continuously so that Γ does
not intersect any singular point of H. Then, by Cauchy's theorem, the
function I\t) on going around the deformed contour changes again by the
same quantity ξ Φ 0. On the other hand, since (1.2) is continuous in the
initial data, I\t, 1°, φ°) is unbounded along 7 holds for all values close to

Λ ψ0-
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Theorem 1. Suppose that
1) det \\d'HaldP \\φΟοη Dc,s,
2) for some initial data 7°, φ° the function I1 is unbounded along the

closed contour γ c C
Then the equations (1.1) do not have a complete set of independent

formal^ integrals

whose coefficients are single-valued holomorphic functions on the direct
product V χ Ω c Dc 6 χ Tg, where V is a neighbourhood of 7° in Dc,&
([29], [32]).

2. We point out the main features of the proof of the theorem. As always,
we begin by showing that the FS(I, ψ) do not depend on φ. Let
(7 φ) S D χ Τ& and Fg = Φ£+/Ψ5

0. Then Φ^ and Ψ% are first integrals of
the non-degenerate unperturbed system. According to Poincare's lemma
(Ch. IV, § 1), they do not depend on ψ e T$. When φ <= Ω, the fact that
FQ is constant follows from the connectedness of Ω and the uniqueness of
the analytic continuation.

Next we prove that the functions FQ(7), ..., F$7) are dependent in the
domain V c Dc,6- For since FS(I, φ, e) is an integral of the canonical
system (1.1), this function is constant on the solutions (1.2). Consequently,
its values at the time r e γ and after a circuit of y coincide:

== F* (7o + ε (7i (τ) + ξ (/ο)) + . . . ) α. ε/"' (/° -f . . . , <p« -f ω τ -f . . . ) + . . .

Expanding this identity in power series in e and equating the coefficients of
e, we obtain

on
bl '

Since the jump ξ is non-zero in a neighbourhood of 7°, the Jacobian

d(F'B. . . . . fg) _ Q

d(h, ...,

on the whole domain V containing 7°.
On the other hand, applying Poincare's method of Ch. IV we can prove

the existence of independent integrals

Φ 5(7, φ, e ) = 2 Φι (Λ φ)ε<

with coefficients holomorphic in Η7 χ Ω (where ^ is a small subdomain of V)
such that the functions Φο (1 < s < n) are independent.

again suppose that the formal series F = ^ F J E H S an integral of the canonical
equations (1.1) if formally {//, F) == 0. It is easy to see that in this case the composition
of the power series (1.2) and VFje* is a power series with constant coefficients.
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3. Again we consider the problem of a heavy asymmetric rigid body
rotating rapidly around a fixed point. The Hamiltonian function Η in this
problem is #„(/) +e#i(/, φ), I 6 Δ c R2{/}, ψ e T2 (see Ch. IV, §3). The
perturbing function Ηγ can be expressed as a sum

}h(I, φ,) β*Φ» + hz {Ι, φ ^ β - ^ + Λ,ί/, φ,),

and for fixed / e Δ the functions hs(I, z) (1 < s < 3) are elliptic (doubly-
periodic meromorphic functions of ζ e C). Consequently, the Hamiltonian
Η can be continued to a single-valued meromorphic function in TQ.

Let φ0 — 0 and /0 e S3 (where S3 is the secular set of the perturbed
problem). We consider in the complex plane ( e C a closed contour γ, the
boundary of a rectangle ABCD (see Fig. 12).

Lf η

A

Γ

c

i

t

Β

ι-Γ

Fig. 12

Here Τ and iT are, respectively, the real and purely imaginary periods of
the elliptic functions fs(I°, ω, ζ), ωχ = ΰΗοβΙλ. The number r is chosen so
that these meromorphic functions do not have poles on y. It can be shown
that the function I\(t, 1°, o) is unbounded along 7 [29]. Consequently, the
solutions of the perturbed problem branch in the complex time plane and
this situation prevents the appearance of a new single-valued integral.

4. Using the branching of solutions we can establish the absence of single-
valued analytic integrals for small but fixed values of e Φ 0. We quote a
result in this direction due to Ziglin [23].

Let M 3 = C2 χ Tl

c{t mod 2π} and let H{z, t, e):M3 χ Ε •* C be a
holomorphic function taking real values for real z, t and e and such that
H{z, t, 0) = H0(z). We consider the Hamiltonian system

(1.3) z = $H', H = H0(Z) + BH1(Z, i)+...

Let ζ ~ zoe. C2, Im z 0 = 0, be a hyperbolic fixed point of the unperturbed
system

ζ = 3 # ; dtfo(so) = O.

The eigenvalues ±λ of the linearized system have non-zero real parts
(Re λ > 0). The solution z{t) = z 0 can be regarded as periodic with period
27Γ. According to Poincare, for sufficiently small lei the system (1.3) has a
27r-periodic solution ζ = p(J, e), p{t, 0) = z0. Continuing the solutions of
(1.3) that are asymptotic to p(t, e) as t -*• -°° to functions maximally
analytic in t & C (possibly not single-valued), we obtain a two-dimensional
complex surface A^, which we call the unstable complex asymptotic surface
of the hyperbolic periodic solution p(t, e).
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We have seen in Ch. VI that the stable and unstable asymptotic surfaces
Λ* and Ke may intersect transversally in the real domain, and this leads to
the absence of an analytic integral on R2 χ 7R (consequently, on the whole
of C2 χ 7c). In this case the complex asymptotic surface Λ~ (Λ+

6), in
contrast to the real case, may have transversal self-intersections, which also
prevent the existence of a holomorphic integral for (1.3).

We give a sufficient condition for self-intersection. Suppose that the
asymptotic solution ζ = za{t) of the unperturbed system ( lim za(t) = z0)

has a single-valued analytic continuation along a closed continuous path
7 : [0, 1] -* C, 7(0) = 7(1) e R c C. Then for sufficiently small lei the
solution z(t, tQ, e) of the perturbed system (1.3) with the initial condition
z(y(0) + t0, t0, e) = ζα(7(0)) also has an analytic (but, in general, not single-
valued) continuation along the "displaced" path y+t0. Let

h(t0, ε) = H0(z(y(i) -f ί0, ί0, ε)) - //0(zo(v(0))) - ε1>,(Ι0) -f O(E)

be the increment of H0(z(t, t0, e)) on a circuit of t along j+t0.

Theorem 2. If hx has a simple zero, then for sufficiently small lei Φ 0 the

complex surface Λ~ has a transversal self-intersection, and the system (1.3)

has no single-valued analytic first integral in M3.

We note that hi{t0) can be calculated by the formula

gi.(Ze(O, t+to)dt.

§2. The monodromy groups of Hamiltonian systems with
single-valued integrals

1. In this section we are first concerned with the investigation of linear
Hamiltonian equations with holomorphic coefficients.

Let Η = (ζ, A(t)z)/2 be a quadratic form in ζ e C 2", and let A(t) be a
given (2n χ 2«)-matrix whose coefficients are holomorphic functions defined
on some Riemann surface X. If, for example, the elements of A(t) are
functions meromorphic on C, then X is the complex plane with some points
(poles) removed. The linear Hamiltonian equations with the function Η
have the form

(2.1) ζ = 3 # ' = 3 Λ (t)z.

Locally, for a given initial condition z(tQ) = z0, there always exists a
uniquely determined holomorphic solution. This can be continued along
any curve in X, however, in general, the continuation is no longer a single-
valued function on X. The branching of a solution of (2.1) is described by
its monodromy group G: to each element σ of the fundamental group
7Tj(X) there corresponds a (In χ 2«)-matrix To such that after a circuit
round a closed path of homotopy class σ the vklue of z(t) becomes Taz(t).
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If τ is another element of the group π^Χ), then TTa = TTTO. The
correspondence a -*• Ta thus defines a group homomorphism ir^X) -*• G
(details can be found, for example, in [13], [56]).

A problem of interest to us is the presence of holomorphic integrals
F{z, t):C2n χ Χ -»• C for (2.1). Since any integral F(z, t0) is constant on the
solutions of (2.1), for each t0 e X the function F(z, t0) is invariant under
the action of the monodromy group G. This property imposes severe
restrictions on the form of first integrals: if G is sufficiently "rich", then
the only invariant functions (integrals) are constants.

Since (2.1) is Hamiltonian, the monodromy transformation group is
symplectic. The problem of integrals of groups of symplectic transformations
has been studied by Ziglin in [24]. We briefly state his results.

2. According to the theorem of Poincare-Lyapunov, the eigenvalues
λι, . . · , λ 2 η of a symplectic transformation g: C 2" -> C2" split into pairs
Xt = λ^+ι, ••·, λπ = λ ^ . We call a transformation g e G non-resonant if
from λ™1 . . . λ™η — 1, with integers my, ..., mn, it follows that all ms = 0.
For η = 1 this condition means that λ is not a root of unity. Let Τ be the
matrix of a non-resonant symplectic map g. Since no eigenvalue of Γ is 1,
the equation Tz = ζ has the trivial solution ζ — 0.

It is convenient to go over to a symplectic basis for the map g: if
ζ = (x, y), x - {x\ xn), a n d y = {y\, .... yn) are the coordinates in this
basis, then g :(x, y) ->• (λχ, λ"1^). A symplectic basis exists if all λ̂  Φ Ι
(1 < 5 < η) (this result is proved, for example, in Siegel [ 18]).

Let F(z) = 2 ^s(z) be an integral of g. Then all the homogeneous forms

Fs are also integrals. Let Fs(x, y) = 31 hixkyl- Then, obviously,

If g is non-resonant, then s is even and fkt = 0 for k Φ I.

Theorem 1. Let g e G be non-resonant. If the Hamiltonian system has η
independent holomorphic integrals F(z, t) : C 2 " χ X ->• C, then any
transformation g' e G has the same fixed points as g and takes the
eigendirections of g into eigendirections. If no k > 2 eigenvalues of g' form
a regular polygon in the complex plane with centre at zero, g' commutes
with g [24].

The latter condition is necessarily satisfied if g' is also non-resonant.
We now prove Theorem 1 for the simple case η = 1, which is important

for applications. Suppose that the eigenvalues of g are not roots of unity
and that (x, y) — ζ is a symplectic basis for g. The eigendirections of g are
the two lines χ = 0 and y = 0. Above, it was shown that any homogeneous
integral of g is of the form c(xyY, s £ N . Let g' be another map of G.
Since the function (xyf is invariant under the action of g', the set xy — 0 is
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fixed by g'. Since g' is a non-degenerate linear map, the point χ — y — 0 is
fixed and g' either preserves the eigendirections of g or permutes them. In
the first case g', obviously, commutes with g, and in the second case it has
the form

x -+ay, y ->-βχ.

Since g' is symplectic, its matrix
10 a

Η
satisfies the condition

5 = Ί Ι β 0

hence αβ = - 1 . But in this case the eigenvalues of S are ±i. The points ±/
form precisely that exceptional regular polygon mentioned in the conclusion
of the theorem, as required.

We consider the case when the elements of A{t) are homogeneous doubly-
periodic meromorphic functions of the time ( £ C , having only one pole
inside the parallelogram of periods. We may take A(t) to be a meromorphic
function on the complex torus X obtained from the complex plane C by
factoring out the lattice of periods. We consider two symplectic maps g and
g' of a period of A(t). We assume that their eigenvalues satisfy the
conditions of Theorem 1. Then for (2.1) to have η independent analytic
integrals it is necessary that g and g' commute. Consequently, to a circuit
of a singular point (the element gg'g^g'"1 6 G) there corresponds the
identity map of C 2 ".

3. We apply this argument to the linear differential equation

(2.2) 'z'+ (ω2 + ε/(ί))ζ = 0,

where ω and e are real constants, f(t) is an elliptic function with the periods
2π and 2πϊ, having a unique pole of order 2 in the rectangle of periods. We
may assume that / for real t takes real values. An example is the Weierstrass
function £°.

Now (2.2) can be interpreted as the linearized equation of the oscillations
of a pendulum with an oscillating point of suspension in a neighbourhood of
a position of equilibrium.

Let us find the eigenvalues of a map g in the monodromy group,
generated by a circuit around the pole of/. For simplicity of writing, let
the pole be at t = 0. The Laurent series of f{t) in a neighbourhood of t = 0
has the form

£ + 2 fntn (a^O).

We look for linearly independent solutions of (2.2) in the form of a series
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Since

we have

2 (ρ4-Η)(Ρ + »-1Κίη-24-(ω2 + εαΓ* + ε Σ /,ί·) 2 cni»==0.

Equating the coefficient of t~2 to zero we obtain the equation

(p(p - 1) + ea)c0 - 0.

Since c0 Φ 0,

p(p - 1) + ea = 0.

This equation gives us two values px and p2 to which there correspond two
linearly independent solutions of (2.2). After a circuit of the pole these
solutions are multiplied, respectively, by e2 j d P i and e2ni<'*. The corresponding
monodromy matrix is the identity if Pj and p2 are integers. In particular, ea
must be an integer.

For e = 0 the eigenvalues of the monodromy matrix of (2.2) under the
map with period 2π and 2π/ are, respectively, XJi2 = e±2™i and μ1 ι 2 == e±Znu>.
Obviously, Ιμ1>21 Φ 1 and λ1<2 Φ ±i if ω Φ 0 and ω =£ i + fcw, k G Z. By
continuity, if ω ^ 3+for, then for small values e Φ Ό the eigenvalues μ1>2

are not roots of unity and λι>2 Φ ±ί (this property in fact holds for almost
all ω and e). Consequently, by Theorem 2, (2.2) in these cases is not
integrable in the complex domain. We note that in the real domain this
equation is completely integrable: it has an analytic integral f{z, z, t) that is
27T-periodic in t. The fact is that by a linear canonical change of variables
that is 27r-periodic in / the equations (2.2) can be reduced to a linear
autonomous Hamiltonian system with one degree of freedom. For / we can
take the Hamiltonian function of the autonomous sytems.

We now consider the non-linear equation of the oscillations of a
mathematical pendulum

z'+ (ω2 + ε/(ί)) sin ζ = 0.

We claim that it can have an analytic integral /(z, z, t) that is doubly-
periodic in t e C only for those values of ω and e for which the linear
equation (2.2) is integrable. To prove this we expand / in a convergent
power series

(2.3) 2 Σ hi{t)zhzl,
^ k + l

whose coefficients fkl are elliptic functions with periods 2π and 2iti. The
first form in (2.3) (when s = m) is obviously a single-valued integral of (2.2).
Consequently, by hypothesis, it must be constant. But then the next form
(s = m+ 1) is an integral of (2.2) and therefore also constant, and so on.
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4. The last remark can be generalized. Suppose that the non-linear
Hamiltonian system

(2.4) ζ = 3//', ζ 6 Cln

has a particular solution zQ{t) that is single-valued on its Riemann surface X.
We put u = z- zo{t). Then (2.4) can be rewritten as follows:

u =

The linear non-autonomous equation

(2.5) u =

is an equation in variations for the solution zo(t). Of course, it is Hamiltonian
with the Hamiltonian function

-!<«., H"{t)u).

To the integral H{z) of the autonomous system (2.4) there corresponds the
linear integral of the equation in variations

(H'(zo(t)), u).

With its help we can, for example, reduce the number of degrees of freedom
of (2.5) by 1.

We assume that the non-linear equation (2.4) has several independent
holomorphic integrals Fs(z) (1 < j < m). Then (2.5) also has first integrals.
They are the homogeneous forms of the expansion of Fs in a power series
in u:

(F's(z0(t)), « > + . . .

These forms are holomorphic functions on the direct product C2" χ X. We
have

Lemma. If (2.4) has m independent integrals, then the equation in variations
(2.5) has m independent polynomial integrals [24].

Thus, the problem of the complete integrability of Hamiltonian systems in
the complex domain reduces to an investigation of the integrability of linear
canonical systems.

By this method Ziglin has proved the integrability of the Hamiltonian
systems of Henon-Heile and Yang-Mills (see Ch. I). He has also applied it to
the problem of the rotation of a heavy rigid body around a fixed point. It
turned out that an additional holomorphic integral exists only in the three
classical cases of Euler, Lagrange, and Kovalevskaya. If the area constant is
fixed to be zero, then to these must be added the case of Goryachev-
Chaplygin [24].

For the systems of Henon-Heile and Yang-Mills one can prove that there
are no integrals even in a real domain. The question of the existence of an
additional real analytic integral for an arbitrary mass distribution in a rigid
body remains open.
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