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Introduction

One of the basic objects of classical mechanics is the Lagrangian system;
a pair (M, L), where Μ is a smooth manifold (the configuration space of the
system), and L is a smooth function on the tangent bundle TM (the
Lagrange function or Lagrangian). One can also consider the more general
case when L depends explicitly on the time t. Motions of a Lagrangian
system are (by definition) smooth paths χ : [tu t2] ~* Μ that are critical
points of the functional (the Hamiltonian action)

'= \ LdtF-
u

in the class of paths with fixed end-points (Hamilton's principle). In local
coordinates χ = (χ1 χ") motions can be defined as solutions of Lagrange's
equations

d dL dL

The left-hand sides of these equations transform covariantly under a change
of local coordinates. Consequently, the set of numbers (Z/.j)" — L'i can be

regarded as a covector, the so-called Lagrangian derivative of L, which is
usually denoted by [L].

In the simplest and most common case of "natural" mechanical systems

the Lagrangian is given by the function (x, x>/2 — V (x), where (, > is a
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Riemannian metric on Μ (twice the kinetic energy) and V: Μ -* R the
potential of a force field. According to Maupertuis' famous principle of least
action the trajectories of the motions with total energy (χ, χ )/2+ V(x) = h
are geodesic lines in the Jacobi metric (h- V)(x, x). Because of the energy
integral the motion takes place in the domain where h - V is non-negative.
If supM(F) < h, then the description of the motions of a natural system
reduces to a problem of Riemannian geometry. From the point of view of
oscillation theory the most interesting case is when ( 1 ) V — h at some points
of M. At these points the Jacobi metric is degenerate. The first non-trivial
results on the behaviour of the trajectories of a mechanical system with a
degenerate Jacobi metric were obtained by Seifert [1 ]. In contrast to
another paper by Seifert (on the same topic) on closed trajectories on the
three-dimensional sphere [2], this paper unfortunately remained little known
for a long time. The active study of domains of possible motions
{x £ M: V(x) ^ h} began after the publication of [3] and [4]. The main
attention was concentrated on the problems of the existence of closed
trajectories with end-points on the boundary {χ ζ Μ: h — V = 0}. These
results are given in § § 1 - 2 .

If we add to the Lagrangian L = (x, x)/2 - V(x) a term ω(χ), where ω is
some 1-form on M, then we obtain the next more complicated class of
mechanical systems. These are studied in §3. The Lagrange equation
contains an additional term, the covector [ω(ΐ)] = Ω(ζ, ·)» where the
2-form Ω is the exterior differential of the 1-form ω. The presence of this
term has no influence on the conservation of energy. If the equations of
motion are written in the form [Ζ.(ζ)](·) = Ω(·, χ), then Ω can be treated
as an additional force acting on the natural mechanical system. We may also
consider the more general case when Ω is closed but not necessarily exact.
In mechanics, Ω is usually called the form of gyroscopic forces. Their
character can be very diverse. Gyroscopic forces appear on transition to
rotating systems of coordinates, on lowering the Rouse number of degrees of
freedom of a system with symmetries (see, for example, [5]), and also in
describing the motion of a charged particle in a magnetic field. Because of
the diverse reasons for the presence of gyroscopic forces, the question of
periodic motions is very complicated. Substantial progress in this question
was made recently by Novikov [6] - [ 8 ] , who constructed an analogue of
Morse theory for many-valued functionals. Novikov's theory refers precisely
to the case when Ω is not exact. Questions of the existence of periodic
trajectories are also considered in §3 from the point of view of the theory
of dynamical systems.

In § §1 -3 we use a variational principle for the stationarity of the
abbreviated Maupertuis action, which is a consequence of Hamilton's
principle and is valid only for autonomous systems. In §4 we establish by
means of Hamilton's principle the existence of asymptotic motions.
(1)See, for example, [35] or [36].
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The results of this section are applied to investigate the stability of periodic or
almost periodic regimes of oscillations. For example, we establish rigorous
sufficient conditions for the instability of the vertical equilibrium of a
pendulum on a vibrating base. Results of this sort are usually obtained by
an approximate analysis (for example, by the method of averaging).

It is not our aim to give an exhaustive survey of the applications of the
calculus of variations in the large to classical mechanics. We have restricted
ourselves to the Lagrangian aspects of mechanics, leaving on one side the
variational principle of Hamiltonian systems

In this variational problem due to Hamilton, modified by Poincare ([9],
Ch. 29), the symplectic coordinates x, y ("momentum coordinates") are
regarded as independent variables. The "action" functional, defined on
curves in the phase space, is unbounded below (and above), therefore, the
gradient descent method of Morse theory in the problem of periodic
trajectories is not effective in this situation. Here other methods are used,
of which [10] and [11] give an idea. We mention also Percival's "non-
traditional" principle [12], based on work of Mather [13]. This principle
was intended for the search for invariant tori of Hamiltonian systems that
are close to integrable. Nor do we touch on the applications of variational
methods to the theory of complete integrability of the equations of motion
of mechanical systems. These questions are discussed in [14] (see also [15]).

In conclusion the author expresses his thanks to V.I. Arnol'd and
S.V. Bolotin for reading the manuscript and making a number of comments.

§ 1 . The geometry of domains of possible motions

1.1. The principle of stationarity of the abbreviated action.
Let (M, L) be a Lagrangian system with the Lagrangian L — L2+L1 + Z,o,
where Ls is a smooth function on TM that is homogeneous of degree s with
respect to velocity. We assume that L2 is positive definite so that L2, the
kinetic energy, determines a Riemannian metric on M. The function
Lo: Μ -*• R can be identified with the force function U: Μ -> R (U = - V).

The Lagrange equation [L] = 0 has the energy integral Η = L2~Lo. For
a fixed value Η — h the motion can take place only in the domain
Bh ={x ζ. Μ: V ^.h], the so-called domain of possible motions. For
h > h — supM V the set Bh is the whole configuration space M. If h < h,
then dBh Φ 0. In the typical case when h is a regular value of Η: TM ->• R
the domain Bh is a smooth manifold with smooth boundary dBh = 2 f t

whose dimension is 1 less than that of M.
For simplicity let h = 0 (if h Φ 0, then we can replace L by L + h). We

assume that Β\Σ Φ0 (here Β = Bo, Σ = Σο).
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Definition. The functional

defined on smooth curves χ : [i1( t2] -* B, is called the abbreviated action or
Maupertuis action.

The integrand in F * is a homogeneous function of velocity of degree 1.
Consequently, the value of F* does not depend on the parametrization of
the path of integration.

Theorem 1. A smooth path x: [fj, t2] -ν Β\Σ such that H(x(t)) - 0 for all
ti < t < /2 ' s α solution of [L] = 0 if and only if it is a critical point^1^ of F*.

Proof. Let \L]Mt) = 0 and L2(x(t)) = Lo(x(t)). Then

(1) 6F* = 6 F -

Conversely, let r: [su s2] -+• / i \ E be a stationary point of F*. We put
.1

t = [ \Π72ιΥΙΙ dx.

Then, obviously, a smooth path .r(s(<)): lt1, t2] -*- 5 \ Σ satisfies L2 = i-o· If
5F* = 0, then it follows from (1) that 5F = 0. This completes the proof.

We define a Riemannian metric (, > in the interior of Β by putting

(x,x) = AL0(x)L2(x), χ 6 TB.

This is called the Jacobi metric. For natural systems when the form of
gyroscopic forces is Lx Ξ 0, Theorem 1 means that in Β\Σ the motions
with zero total energy are the geodesic lines in the Jacobi metric.

When h > h, then Β coincides with Μ and (B, <, >) is an ordinary
Riemannian manifold. Otherwise the boundary Σ of Β is non-empty and the
Jacobi metric has a singularity: the lengths of curves in Σ are zero.

u)<O

Fig. 1

^Historically, "Maupertuis' principle" (Theorem 1) was preceded by the simpler
stationarity principle for the Hamiltonian action. "The actual content of this "principle'
was not quite clear to Maupertuis. The precise formulation given in the text is due to
Jacobi and his predecessors, Euler and Lagrange" (Wintner [16], 124).
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Natural systems have the property of "reversibility": when x(t) is any
solution of the equation of motion, then x(~t) is also a solution. This
simple remark and the uniqueness theorem gives the following proposition.

Proposition 1. Let x: (—ε, ε) -*• Β be a motion of a natural system and let
x(0) 6 Σ. Then x(t) = x(—t)for all — ε < t < ε.

In the general irreversible case Proposition 1 is, of course, false.

Example 1. We consider a Lagrangian system (R2 = {x, y}, L) with the

Lagrangian L = (x2 -f y2)/2 -f (u(xy—yx) -f- U(x, y). The equations of motion

(2) x i

coincide in form with the equations of the restricted three-body problem
(see [16], Ch. VI). Suppose that (0, 0) £ Σ and that the χ-axis is directed
along the normal Σ into B. Let (x, y): (—ε, ε) -*- Β be a solution of (2)

such that JC(0) = y(0) = 0. Consequently, x(0) = y(0) = 0. Suppose that
χ = y = 0 is a regular point of U. Since U'y — 0, we have U'x(0) > 0 (taking
account of the chosen direction of the x-axis). It follows from (2) that

x(0) = α > 0 , ί/(0) = 0, and y'(0) = —2ωα. Consequently, by Taylor's
formula, we have the expansion

x(t) = atV2 -f o(i2), y(t) = —2ωαί3/3 + o(t3).

Thus, close to the cusp χ = y = 0 both branches of the trajectory are
semicubical parabolas (Fig. 1). This conclusion is true, of course, also for
systems of a very general form.

1.2. The geometry of a neighbourhood of the boundary.
Suppose that Σ is compact and contains no positions of equilibrium of the
system (dt/ | s =^0). Let q ζ Σ and t > 0. We denote by x(q, t) the solution
of the equations of motion with the following initial conditions:

(3) « ( ϊ , Ο ) - , , -L
( = 0

Our problem is to study the smooth map ( 1 ) χ: Σ X [0, ε) ->- Β.
Since U: Μ -> R has no critical points on Σ

o ^ * ^ ' * ) ) = - 2 L $ (£/'(<?))<0,

where L*2 : T*M -*• R is the function dual to the kinetic energy L2 '• TM -*• R
(in the sense of the Legendre transformation). Consequently,
χ: Σ X [0, ε) -»- Β is a homeomorphism of a small neighbourhood of Σ χ {0}
onto some neighbourhood of Σ in B, and the inverse map is smooth
outside Σ.

Β is compact, then χ is defined on Σ χ [0, oo).
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Let s(q, t) be the arc length in the Jacobi metric along a geodesic
t~*x(q, t):

ο

It follows from (3) and (4) that for t = 0

s = s't = s"tt — 0, s'ul > 0.

By the implicit function theorem, for sufficiently small values of r > 0 the
equation r3 = s(q, t) can be solved for t; the function t(q, r) is smooth and
for r = 0

(5) ί=ο, t;>o.

For all q £ Σ and small r > 0 a smooth map (q, r) «-*• (ςτ, i(g, r)) is defined.
Since its Jacobian at r = 0 is t'r > 0 and Σ is compact, this map is a
diffeomorphism in a sufficiently small neighbourhood of Σ Χ {0}. For small
e > 0 we can define a map Σ X [0, ε] —>- 5 by /(g, s) = z(g, t(q, s1/3));
/ maps Σ X [0, ε] homeomorphically to a neighbourhood of Σ in β and the
restriction of / to Σ χ (Ο, ε) is a diffeomorphism.

For all 0 < s < ε we put W, = /(Σ χ [0, s]), Bt = ΰ \ / ( Σ χ 10, $)), and
Σ 8 = /(Σ χ {*}).

Lemma 1. The sets Ws, Bs, and Σ, are smooth submanifolds in Β and are
diffeomorphic, respectively, to Σ χ [0, 1], Β, and Σ.

For the map (q, r)<-+f(q, r3) is smooth, and by (3)-(5) for r — 0

Proposition 2. For small ε the set Wt has the following properties:
1) geodesies in the Jacobi metric starting in Σ intersect the hyperplane

Σ β a We (0 < s ^ ε) at right angles;
2) for any ζ £ Wt there is a unique geodesic yz starting in Σ and passing

through z;
3) 7Z is the shortest piecevAse-smooth curve joining ζ to Σ;
4) there is α δ > 0 such that each geodesic in the Jacobi metric of length

less than δ joining two points of Wt lies entirely within Wt,

1) and 4) are analogues to well-known results of Gauss and Whitehead on
Riemannian geometry. For proofs, see [17].

From this proposition it follows, in particular, that Σ 5 (s < ε) is the set
of points of Β at a distance s from the boundary. A similar geometric
interpretation can be given to Ws and Bs.
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1.3. Riemannian geometry of domains of possible motions with boundary.

Let a, b £ B. We denote by Q a b the set of piecewise-smooth paths

7 : [0, 1] -+ Β with initial point a and end-point b. We define a function

d : Β χ Β -+ R by d(a, b) = inf {l(y): y ζ Qab), where l(y) is the length of 7

in the Jacobi metric. The non-negative function d gives a pseudo-metric on

B, since

1) d(a, a) = 0 for alia £ £;

2) d(a. b) = d(b, a) for all a, b £ 5;

3) rf(a, b) + d(b, c) > d(a, c) for all a, b, c £ β.
We note that the pseudo-metric d is not a distance on B, since d(a, b) = 0

for any α, δ in a single connected component of Σ. However, if α $ΕΣ then

rf(a, 6) = 0 implies that a = b. This means that d is a distance inside B,

therefore, (Β\Σ, (, » is an (incomplete) Riemannian manifold.

The distance from c £ Β to the boundary Σ is defined as

d(c) — ini d(c, x).

If the boundary is connected, then 3(c) = d(c, a) for all a ζ Σ. Also,

3(c) = 0 if and only if c ζ Σ. We mention that d and 3 are continuous on

Β χ Β and 5, respectively.

Proposition 3. le/1 5 fte compact.

a) If Σ is connected, then for all a, b £ Β

d(a, b) < d(a) + d(b),

β) if d{a, b) < 3(a)+ d(b), then a and b can be joined by a geodesic in the

Jacobi metric of length d(a, b) lying entirely within β \ Σ .

This result is easy to prove by standard techniques of Riemannian

geometry.

Theorem 2 [4] . If Β is compact, then any a EL Β can be joined to some

point of Σ by a geodesic line of length d(a).

Let x(q, t) £ Β be the image of (q, t) under a smooth map Σ X [0, oo) ->- Β

(see 1.2). Since the equations of motion are reversible, the following

corollary holds.

Corollary.

U U x (?τ t) = B.

Proof of Theorem 2. Let 7': [0, 1/2] -> Β be a shortest geodesic joining

7'(0) = a to the hypersurface Σ ε . Such a curve exists and is orthogonal to

ΣεΆί y'QA). By Proposition 3 there is a geodesic 7": [V2, 1 ] ->· Β of length

joining y"(V2) = y'iVi) to the boundary Σ. The curve 7 : [0, 1] -*• B, which

coincides with 7'(7") in [0, V2] {[Vi, 1]), is obviously a smooth geodesic of

length 9(a), where 7(0) = a and γ(1) ζ Σ.
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Theorem 2 can be regarded as an analogue of the Hopf-Rinow theorem
(see [18]) of Riemannian geometry. In contrast to the Riemannian case,
here even for compact Β not all pairs of points can be joined by a geodesic
in the Jacobi metric.

Example 2. We consider the oscillations of a plane harmonic oscillator
described by the equations χ ~ -χ, y — —y, with total energy h = 1/2. In
this problem Β is the unit circle x2 + y2 < 1. It can be shown that the set
of points of the unit circle that can be reached from a point (x, y) = (a, 0) with
initial velocity Ιυ I = >/(l ~a2), is given by the inequality x2 + y2/(\ - a2) < 1
(see Fig. 2). When a -> 0 (or a -»· 1), this "accessible set" ( 1 ) tends to the
whole of Β (or to the segment y = 0, -1 < χ < 1).

In the irreversible case Theorem 2 is false.

Fig. 2 Fig. 3

Example 3. We consider a plane harmonic oscillator under the action of
additional gyroscopic forces:

• · · · * ·
(6) χ = — 2oy — x, y = 2ωχ — y.

These equations describe, in particular, the small oscillations of a Foucault
pendulum (see [25]). In this problem Β is again the circle x2 + y2 < 1. Let
Βω be the set of points of Β that can be reached from Σ by moving along
trajectories of (6). In polar coordinates r, φ the equations (6) take the
following form:

ν=Γ(φ(φ-2ω)-1),

The second equation can be integrated: τ2φ = cjr2 + c. Since r = φ = 0,
r = \ for t = 0, we see that c = -co. After substituting φ = (1 -Γ2)ω in
the first equation we obtain a system with one degree of freedom:

From the energy integral

general definition of an accessible set was given by Tatarinov in [19].
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it follows that Βω is given by the inequalities

ω»
+ ω

Consequently, Βω for ω Φ 0 does not coincide with B; as ω -> 0, Βω

tends to Β and as ω -* °°, Bw degenerates to the boundary Σ = {ζ2 -f y2 = 1}.
The trajectories of (6) starting on Σ are depicted in Fig. 3. For almost all ω
they fill Βω densely. If a trajectory of (6) passes through the origin then
c — 0 and, consequently, φ = ω. In this case the point performs harmonic
oscillations with frequency -^(1 + ω2) > 1 along a segment of length
2/\/(l + ω 2) < 2 passing through the origin and uniformly rotating with
constant angular velocity ω. The presence of these motions is a characteristic
property of Foucault's pendulum.

In the general irreversible case we denote by B+ the closed set of points
of Β where 4L0L2 ~> L\. If we exclude the degenerate case when Lx = 0 at
some point of Σ, then B+ cz Β\Σ. Inside B+ the integrand in the functional
of the abbreviated action F+ is positive definite. This property holds
simultaneously for mechanical systems with Lagrangians L± = L2 ± Lx ± LQ.
If x{t) is a solution of [L + ] — 0, then x(-t) is one of [ i_] = 0 and vice
versa.

It can happen that B+ is empty. In this case we can proceed as follows.
Let Li = α(χ)·χ and x0 6 5 \ Σ . We change Lx locally into Lx-Lx, where
Lx = a(xo)'x. Since Lx is closed, the Lagrangian equation [L] = 0 remains
unchanged. For the new Lagrangian 4L0L2 > L\ holds in a small
neighbourhood of x0, since Lx Ξ 0 at χ — x0. This remark allows us to vary
the form and situation of the domain B+.

We decrease B+ by removing an ε-neighbourhood (for example, in the
Jacobi metric) of dB+. The remaining set is denoted by B%.

Fig. 4

Proposition 4. Let Β be compact and let Bi be non-empty for some ε > 0.
Then:

1) for any a £ Bt there is a solution x: [0, τ] -*• B% of Lagrange's
equation [L] = 0 such that x(0) = a and χ(τ) ζ dB+

K;
2) for any a £B\ there is a solution y: [0, τ] -»- B% such that y(0) £ dBX

and y(r) = a.



46 V.V. Kozlov

Proof. The curve x(t) (or y{~t)) attains a minimum of the action functional
F* corresponding to the Lagrangian L+ (or L_) in the set of piecewise-
smooth curves joining a to points of the boundary B£.

Remark. In contrast to Theorem 2, the constant ε in Proposition 4 cannot
be put equal to zero (even when B+ cr # \ Σ ) .

Example 4. The motion of an asteroid in the restricted three-body problem
is described by (2) where we have to put ω = 1 and

In this problem the Sun and Jupiter, with masses 1 -μ and μ, rotate with
unit angular velocity along circular orbits, with radii μ and 1 -μ, around
their common centre of mass, and an asteroid, a body of negligible mass,
moves in the plane of the ecliptic undergoing attractions from the Sun and
Jupiter (Fig. 4); for details, see [16] Ch. VI. The domain Β (the so-called
Hill domain in celestial mechanics) is given by U > —h. If L-ί has the
"standard" form xy-yx, then B+ is the set

Pi "PT"^" ~

which is the domain of possible motions in the problem of two fixed centres
(fixed Sun and Jupiter attracting the asteroid according to the law of
universal gravitation).

§2. Periodic trajectories of natural mechanical systems

2.1. Rotations and librations.
A solution χ : R -*• L of Lagrange's equation [L] = 0 is periodic if
x(t + r) — x(t) for all r G R and some τ > 0. The trajectory of a periodic
solution is always closed. We are interested in the existence of closed
trajectories for fixed values of the total energy h. We assume that h is a
regular value (to exclude trivial periodic solutions, namely, equilibria).

Proposition 5. A closed trajectory j of a periodic solution χ : R -> Β with
zero energy

1) either does not intersect Σ,
2) or has precisely two points in common with Σ.

To each trajectory of the first type there correspond two distinct periodic
solutions (rotations relative to γ in opposite directions), and to one of the
second type a unique periodic solution (oscillatory motion between the
boundary points of 7). Periodic motions of the first type are called
rotations and of the second type librations. It follows from Proposition 1
that if the trajectory of some solution χ : R -»• Β has two points in common
with Σ, then there are no other common points, and x(·) is a libration.
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If 2 = 0, then the question of the existence of periodic motions reduces
to that of the presence of closed geodesies of a Riemannian manifold
(M, (, >). This classic problem of Riemannian geometry has been well
studied (at least for compact M). If Μ is not simply-connected then, as
Hadamard showed in 1898, each closed curve that is not homotopic to zero
can be deformed into a closed geodesic of minimal length in its free
homotopy class. This remark gives a lower bound on the number of distinct
closed geodesies on a non-simply-connected manifold. The problem of the
existence of periodic geodesies in the case of a simply-connected Μ is much
more complicated. In 1905 Poincare established the existence of such curves
on the convex two-dimensional sphere^1 \ Later this result was extended by
Birkhoff to the case of an arbitrary many-dimensional Riemannian sphere.
Lyusternik and Shnirel'man proved (in 1929) that there are three non-self-
intersecting closed geodesies on the two-dimensional sphere. With certain
additional restrictions an analogous result holds in the many-dimensional
case: if the Gaussian curvature Κ of the sphere Sn (at all points and in all
two-dimensional directions) satisfies K0/4 < Κ < A'o, for some Â o > 0, then
there are η non-self-intersecting closed geodesies on S" (Klingenberg). The
existence of a closed geodesic on any compact manifold was established by
Lyusternik and Fet (1951). For certain simply-connected manifolds it has
even been proved that there are infinitely many distinct closed geodesies
(Gromoll and Meyer). At present it is not completely clear whether this
result holds in the general case of a simply-connected manifold. A detailed
survey of the present state of these questions can be found in the book by
Klingenberg [20].

For a non-empty Σ the situation as regards the existence of periodic
trajectories is clarified by other means. A good idea in this case is given by
the following example.

Example 5. We consider the oscillations of a "poly-harmonic" oscillator,
described by the equations 'xs+ oo]xs = 0 (1 < s < « ) with rationally
independent frequencies co1; ..., ωη. The domain of possible motions Β with

total energy h is the ellipsoid V, ω]χ'' ^ 2h. For any h > 0 the equations

of motion have precisely η periodic oscillations, namely, librations, whose
trajectories coincide with the principal axes of this ellipsoid. It is worth
stressing that there are no rotations and that the number of periodic
trajectories for a fixed value of the total energy is finite. If the frequencies
OJI, ..., ωη are rationally commensurable, then the number of librations may
increase. For example, in the case η = 2 when ωι/ω 2 is rational, there is a

proposed two approaches to the solution of this problem. The first was
based on the principle of analytic continuation of periodic trajectories (see also [34]).
The second was purely variational: among the closed non-self-intersecting curves that
divide the sphere into two halves with equal total curvature there is ι curve of minimal
length; this is the required closed geodesic.
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libration trajectory through each point of Σ. To prove this we have to take
account of the fact that if ωγ1ω2 is rational, then all trajectories are closed
and use Proposition 5. Note the special case ωι = 1, ω 2 = η G Ν. The
libration energies h are given by x1 — xl cos t, x2 — x% cos nt, where
xl ~^/{2h) sin a, x% =y/(2h)(cos a)/n, and a is an arbitrary constant. Let
1h = n2+ 1; then for some a the values of xl and xl are 1 and the
trajectory of the corresponding libration in R2 = {x1, x2} coincides with part
of the graph of the Chebyshev polynomial Tn.

2.2. Librations in non-simply-connected domains of possible motions.
For any group π we denote by r(n) the least number of its generators. Let
ΒΙΣ be the topological space obtained from Β by contracting Σ to a point,
and η(Β/Σ) its fundamental group.

Theorem 3. Suppose that Β is compact and that there are no equilibrium
positions οηΣ. Then the number of distinct librations in Β is at least

Remark. This number is not less than the first Betti number of Β modulo Σ.

Corollary. If Σ has η connected components then the number of librations
in Β is at least n — \. In addition, for each connected component of Σ there
is a libration with an end-point in this component, and the trajectories of
these librations have no self-intersections (Fig. 5).

Fig. 5

For in this case π(ΒΙΣ) contains a free group with (n - 1) generators.
Theorem 3 was proved by Bolotin and the author in [17]; it is analogous

to the standard theorem of Hadamard on minimal closed geodesies on a non-
simply-connected Riemannian manifold.

Let us give an idea of the proof of the corollary. We may suppose that Β
is a closed submanifold with boundary of a compact Riemannian manifold Μ
whose metric on 2?\We coincides with the Jacobi metric. Let Σ£, . . ., Σ?
be the connected components of Σ ε and di} (i < j) the distance between Σ^
and Σ{. We fix /; among the numbers dis (i =^s) there is a smallest. This is
realized by a non-self-intersecting geodesic γ,- of length dit lying entirely in
•S\Weand orthogonal to Σ ϊ at both ends. The geodesic yt can be extended
to a libration periodic solution using Proposition 2 (compare with the proof
of Theorem 2). The number of such distinct "minimal" librations is
obviously at least η — 1.
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Example 6 ([17]). We consider the problem of the existence of librations
of a plane η-linked mathematical pendulum (Fig. 6). Let /1( ..., /„ be the
lengths of the links, counting from the point of suspension, Plt ..., Pn the
weights of the corresponding material points, and 01, . . ., ϋη the angles
formed by the links with the vertical. The configuration space Μ is an
«-dimensional torus Τ" = {#', . . ., ϋη mod 2π}, and the potential energy has
the form

V = - § a,coed*, *ι = ΙιΣ Ρ).

The set of critical points of V: T" -»• R is in one-to-one correspondence with
the set of all subsets of Λ = { 1 , 2, . . ., η}; the index of the critical point
corresponding to a subset / C Λ is equal to the number of elements in /,
and the critical value is

Let h be a non-critical value of the potential energy and | h \ <z 2!Λ °-ι·

this case the domain Β C T" has a non-empty boundary Σ. We put

Β = Ίη\Β. Since Β.'Σ = Τ"/Β, we see that η(Β/Σ) == π(Ύη/Β). We

put r = Γ(π(Τη/5)) and r = τ(π(β)). Let k < η be the number of critical
points of the function V: T" -> R in 5 with index (« - 1). We claim that
r = k.

Fig. 6

For T"IB (or 5) is homotopy equivalent to a cell complex with k
(respectively, η - k) one-dimensional cells. Therefore r < k, r <, η — k. Since
π(Β) and π(Ί"/Β) generate π(Τ"), we see that η < r + 'r < k+(n~ k) = n.
Therefore, r = k.

Applying Theorem 3 we obtain the following result: if h Φ hj for all
/ C Λ and | h | < ΣΑα{, then the number of librations with total energy h is

not less than the number of indices i such that ax + . . . + a ^ -f- ai+1 +
+ . . . -f an <Z h. Depending on the value of h this lower bound on the
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number of librations varies from 0 to n. In §2.4 it will be shown how this
bound can be improved using symmetry properties.

Theorem 3 on shortest librations has the following sharper form due to
Bolotin.

Theorem 4. Suppose that Β is compact and that there are no positions of
equilibrium on Σ. Then there are at least τ(η(Β/Σ)) distinct unstable
librations in Β with real characteristic multipliers.

The proof consists simply of the verification that all characteristic
multipliers of the shortest librations, whose existence is guaranteed by
Theorem 3, are real.

Example 1. We consider the motion of a material point in a central field
with potential V = r + r~l. For h > 2 the domain Β is an annulus, and
obviously, through each point of its boundary there is a librational trajectory.
All these librations are shortest; they are degenerate, since all their
characteristic multipliers are zero. The instability of the librations is easily
deduced with the help of the area integral: τ2φ = const.

In the general case the characteristic multipliers are non-zero, therefore,
the shortest librations are (orbitally) unstable in the linear approximation.
In addition, since these librations are hyperbolic periodic solutions, there are
families of trajectories asymptotically approaching the trajectories of the
shortest librations as t ->• ±°°.

Let A(j) denote the set of points in Β that are on trajectories asymptotic
to 7. An idea of the form and situation of A(y) is given by the following
example.

Example 8 (Bolotin). Let Μ = S1{x mod 2π) Χ R{y} and L = (x2 + y2)/2 +
+ cos x~y2/2. For h > 1 the domain Β is diffeomorphic to the ring
I >'l < y/(2(h + cos x)) and the curve χ = π, y = y/(2(h - 1 ))cos t is a
shortest libration with energy h. The Lagrange equations [L] = 0 have two
first integrals x2/2~ cos χ and y2 + y2. With their help it is easy to show
that A = {| y | < \/(2(h - 1))}. Note that A is not equal to β and that
Λ Π Σ consists of the ends of the trajectories of the shortest librations.

2.3. Librations in simply-connected domains and Seifert's conjecture.
The first general result on librations of natural systems is due to Seifert, who
proved in [ 1 ] that there are librations when Β is diffeomorphic to an
«-dimensional disc.

Theorem 5 (Bolotin). If Β is compact and Σ contains no critical points of
the potential, then there is at least one libration in B.

Continuing the analogy with Riemannian geometry we may regard the
theorems of Seifert and Bolotin as corresponding to the results of Birkhoff
and Lyusternik-Fet on closed geodesies on the «-dimensional sphere and
arbitrary simply-connected manifolds.
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The proof of Theorem 5 is based on the following result:

Lemma 2. There is an I > 0 such that for all 0 < ε ^ δ there is in

Λε = B\Wt a geodesic in the Jacobi metric of length less than I with end-
points on Σεαηά intersecting Λδ.

We deduce Theorem 5 from this. For all s in (0, δ) we denote by
7S: [as, bs] ->• As the geodesic of Lemma 2. We suppose that 7,5 has the
natural parametrization, also that as < 0 < bs and 7/0) £ Λδ. Since Λδ is
compact, there is a sequence sn ->• 0 such that

Let 7 : (α, b) ->• Β be the unique maximal geodesic in the Jacobi metric for
which 7(0) — χ and -y(0) = v. Clearly, 7 is the trajectory of a libration in Β
whose length does not exceed /.

Lemma 2 is proved by methods of Morse theory. We choose a small
δ > 0 and let 0 < s < δ. We introduce the space of piecewise-smooth
curves 7 : [0, 1 ] -*• Μ such that γ(0), γ(1) ζ Σ ε ; we denote this space by Ω.
Let Γ be the subspace of Ω consisting of the curves that do not intersect
the interior of As. On Μ we can indicate a family of smooth functions Vs,
0 < s ^ ε, such that Vs coincides with V in As, Vs ^ Γε on M, and
sup Vs <c h. For all s 6 (0, ε] we specify a metric (,)s on M, the Jacobi

Μ

metric defined by the potential Vs and the energy h. Finally, we define the
action functional Fs: Ω -*• R by

1

0

The critical points of Fs are precisely the geodesies in the metric <, )s that
are orthogonal to Σ 5 at both ends.

For any a > 0 we put Ω? = {y 6 Ω: Fs(y) < a} and Γ? = Γ Π Ω°.

Lemma 3. If Fs, 0 < s =C ε, has no critical points in Ω?\Γ°, then T° is a
deformation retract of Ω?.

The idea of the proof is to shift Ω? "down" onto T° along integral curves
of the gradient field of Fs. The main feature is the use of the convexity of
Ws : the relevant "curves of steepest descent" do not leave Γ,.

Lemma 2 is deduced from Lemma 3 and the following topological fact:
since Β/Σ is not contractible, Γ° for sufficiently large a > 0 is not a
deformation retract of Ω?. A detailed proof of Theorem 5 is in [21 ].

Example 9 [3]. We consider the rotation of a rigid body in an axisymmetric
force field with potential V. For zero values of the constant of kinetic
momentum this problem reduces to the investigation of a natural system
with two degrees of freedom on the sphere. Theorems 3 and 5 and the
results of Morse theory imply the following assertion: for all non-critical
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values h > min V this system has periodic solutions of energy h. If
h > max V, then by the Lyusternik-Shnirel'man theorem there are at least
three distinct non-self-intersecting periodic trajectories on the Poisson sphere.

Remark. The problem of periodic trajectories of "Lorentz" Lagrangian
systems with Lagrangian (Sx, x)/2- V(x), where (,) is the standard scalar
product in R" and S is a symmetric non-degenerate linear operator with one
negative eigenvalue, is discussed in [39]. Let Σ = {y 6 R" : (Sy, y) < 0} be a
cone in R". If x(') is a motion with zero total energy starting in
C = {V(x) > 0}, then χ 6 Σ. Since Σ consists of two connected components,
a transition from one component to the other (a change of the "direction"
of motion) can happen only on the boundary of C. If χ hits dC, then
Proposition 1 is valid: the point moves along the same trajectory in the
opposite direction. In [39] it was proved that under the assumption of
compactness and convexity of C there are librations provided that there are
no critical points of V on the boundary of C. The proof is based on an
application of topological fixed point theorems for smooth maps.

In connection with Theorem 5 it is natural to ask for lower bounds on the
number of distinct librations when Β/Σ is simply-connected. Example 5
shows that a universal bound cannot exceed the dimension of B. The
Seifert conjecture asserts that there are η distinct librations when Β is
diffeomorphic to an «-dimensional disc D". Up to now the conjecture has
been neither proved nor disproved. We quote a result, due to Bolotin, in
favour of the Seifert conjecture.

Suppose that the domain of possible motions Β is diffeomorphic to D"
and that (D", Sn~y) -*• (Β, Σ) is a continuous surjective map. For any two
points x, y £ S""1 we define a continuous curve fXiU: [0, 1] -*• Β by
/*,i/(0 = /((I — t)x -f ty), 0 < t < 1. We assume that / is smooth enough so
that fXiy for all x, y 6 S"'1 is piecewise-smooth. The abbreviated action F* is
defined on such curves. We put

S = inf sup F*(fx.u).
i z.yes""1

Theorem 6. Suppose that for any libration y in Β m Dn, 2^*(γ) > S. Then
there are η distinct librations j u ..., yn in Β such that S/2 < F*(yi) < ... <
<F\yn) = S.

Example 10. We continue with the discussion of Example 5. Let
ωχ > ... > ω η > 0 be the frequencies of a poly-harmonic oscillator. As we
have already seen, this problem always has η distinct librations of energy h:

γ,: χ1 = Y~2hlh>i cosω^, xi = 0 ( i > l ) ,

yn: xi = 0 ( i<ra), xn = V~2h/u>n cosω η ί .

It is easy to calculate that F*(7,-) = πΛ/ω,·; thus, F*(yi) < ... < F * ( 7 n ) .
Here 5 = F*(yn) and the condition of Theorem 6 is equivalent to 2ωη >
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Remark. A related problem of the existence of periodic solutions of
Hamilton's equations in R2" with a convex Hamiltonian Η was discussed in
[10]. It was proved that if for some a > 0

a | ζ |- < H(z) < 2 a \ z | 2 ,

then on each level set H(z) = h, h > 0, the Hamiltonian system has at least
η distinct closed trajectories. For a poly-harmonic oscillator with frequencies
ojj > ... > ωη > 0 these inequalities give the same condition 2ωη > co1;

since by the substitution qt = -^(ω,-,γ'), ρ ι = χ '/\/ω ' * n e equations of the
vibrations of the oscillator reduce to Hamiltonian form with the Hamiltonian

#=4-Σ
2.4. Periodic oscillations of a many-linked pendulum [22] .
Here we obtain an estimate of the number of distinct periodic motions (both
librations and rotations) of given energy of the compound pendulum of
Example 6. The configuration space of this system is the «-dimensional
torus Τ" = { θ \ . . ., θ η mod 2π} where θ 1 , . . ., θ" are the angles formed
by the links with the vertical. We may assume that the configuration space
is the covering space R" = {θ1, . . ., ϋη} and that the Lagrangian L is a
function on TR" that is 2w-periodic in θ 1 . The positions of equilibrium are
the points of R" of the following form: a = (ηι^τι, ..., ηιηπ), where the ms

are integers. It is easy to see that the Lagrangian admits a reflection of R"
relative to a position of equilibrium, that is, the map Λο: θ —*• —θ -+- 2α.

Lemma 4. If a trajectory of some motion ^{t) passes through α (θ(0) = α),
then this curve is invariant under the reflection Aa (that is,

•&(—t) = Λ0Φ(ί) = —θ(ί) -+- 2α). In particular, h(—t) = 4(t).

Lemma 5. Let b Ε R" be another equilibrium (α Φ b). If a trajectory of a
motion θ(ί) contains points a and b, then:

1) there is α τ > 0 such that f)(t -f- τ) = θ(ί) -f 2(6 — α) for all t e R,
2) b(t) =£0 for all t <Ξ R.

Let /?_ (h+) be the smallest (largest) value of the potential energy F(d).

Proposition 6. Let h be a non-critical value of the potential in the interval
(Λ_, h+). Through each critical point of V in the interior of
Β = { Γ ^ Λ } < ζ : Τ" there passes at least one libration trajectory. The
librations passing through different critical points are distinct.

Corollary. The number of distinct librations in Β is at least equal to the
number of positions of equilibrium of the pendulum in the interior of B.

Depending on h this lower bound of the number of librations of energy h
varies from 1 to 2" - 1. This estimate strengthens the result mentioned in
Example 6. True, the estimate in Example 6 holds even when the potential
has no symmetry properties.
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Proof of Proposition 6. Let a ' G f i C T " be a position of equilibrium of the
pendulum. Since h is non-critical, by Theorem 2 there is a motion
7 : [0, r] -* Β such that 7(0) = a' and γ(τ) 6 Σ. According to Lemma 4,
7 : R -*• Β is the required libration whose trajectory contains a . The
librations passing through different critical points are distinct because
otherwise (by Lemma 5) the velocity of the motion can never vanish.

We now consider the case h > h+. Since Σ — 0 , periodic solutions can
only be rotations. We examine the question of the existence of periodic
rotations of an η -linked pendulum under which the fc-th link makes Nk

complete revolutions during the period of rotation. We call such motions
rotations of type }Νλ, . . ., Nn[.

Proposition 1. For any fixed integers Nu .
2""1 distinct periodic rotations of type]N1,

Nn and any h > h + there are
. ., ΛΓ,,[ with total energy h

whose trajectories on T" pass through pairs of critical points of V.

Proof. Obviously, we may assume that Nv ..., Nn are relatively prime. We
consider a pair of critical points a' and a" of V in R" = {ϋ} whose
•θ*-coordinates are different from πΛ^. These points cover distinct points b'
and b" on T". We join b' and b" by a shortest geodesic in the Jacobi metric
on T". To this geodesic there corresponds a motion y: R ->• T" such that
7(i') = b' and y(t") = b", t" > t'. Suppose that the curve θ : R -»· R"
covers 7 and that ·θ(ί') = α', ·θ(ί") = a". By Lemma 2 there is a τ > 0 such
that

τ) - θ(ί) = 2(β' - α') = 2πΝη).

Consequently, the motion 7 : R -» T" is periodic of type 1ΛΊ, 7Vn[ with

period T. Since Nn are relatively prime, r is the least period of 7.
From this remark and Lemma 5 it is easy to deduce that the trajectory of 7
on T" contains no points of equilibrium other than b' and b".

Fig. 7
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In Fig. 7 are depicted four pairs of equilibrium positions of a three-linked
pendulum that are taken for distinct periodic solutions of type ]1, 2, 3[.

In conclusion we show that under certain conditions periodic rotations of
the pendulum exist even for values h < h+. To see this we consider a
double pendulum with identical rod lengths /, masses mx and m2, g being the
acceleration of free fall. The Lagrangian is

L = -*- (m, + nh) W* + -f- Ρβζ* + τη,ϊΦθ2 cos (θ1 - θ2) +

+ m,gΖ cos ϋ 1 + m-2gl (cos Φ1 + cos ϋ 2).

We consider the case when h is close to h + . Fixing the value of m, we let
m2 tend to zero. For sufficiently small m2 the distance between a — (0, 0)
and b — (0, π) is less than the sum of the distances from these points to the
boundary Σ. For d(a, b) does not exceed the length of the segment
{#i = 0, 0 < θ 2 < π } cz R2, which is

Ym^ I j V h+ mtgI + mzgl (1 + cos if-)
ο

This quantity tends to zero as m2 ~* 0. Since here Β is near to
{h + mjgl cos* 1 > 0 } ,

lim d (a) =

Hence, d(a, b) < 3(a)+ 9(Z?) for small m2. By Proposition 3 there is a
shortest geodesic in the Jacobi metric in the interior of Β and joining a to b.
To this geodesic there corresponds a solution of the equations of motion
with total energy h. Since a and b are positions of equilibrium, by Lemma 5
this solution is a periodic rotation.

§3. Periodic trajectories of irreversible systems

3.1. Systems with gyroscopic forces and many-valued functionals.
So far we have considered the situation when the "seminatural" Lagrangian
L = L2+ Z-i+Z-o is a single-valued function on the tangent bundle TM. In
particular, the 1-form ω = Lx is defined and single-valued everywhere on M.
Consequently, its exterior differential Ω = άω, the 2-form of gyroscopic
forces, is exact. It is useful to generalize this situation by considering
mechanical systems with a closed (but not necessarily exact) form of
gyroscopic forces.

Example 11. The motion of a charge in the Euclidean plane R2 = {x, y} in
a magnetic field (directed along the z-axis) with intensity H(x, y) can be
described by the equations χ — ~Hy, y — Hx. The form of gyroscopic
forces Ω is, obviously, Η dx /\ dy. It is, of course, exact. If, for example,
Η — const, then ω = H(ydx — xdy)j2. We consider the special case when
the magnetic field H(x, y) is 2w-periodic in χ and y. In this case for the
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configuration space we can take the two-dimensional torus T2 = {x, y mod 2π}
with the flat metric. The form Ω is exact if and only if the total flux of
the magnetic field

2π 2π

77= j ^Hdx/\dy
ο ο

vanishes.

Example 12. We consider the motion of a charge on the surface of the unit
sphere (r, r) = 1 in R3 = {r}. We assume that the magnetic field is uniform
in size and directed orthogonal to the surface of the sphere. The equation
of motion can be presented by means of the Lagrange multiplier

V = H(r X r) + λΓ, <r, r> = 1; Η = const.

Hence λ = —{r, r). Since the total energy Ε = ir, r)/2 is preserved,
λ(/) = -2E = const. It can be shown that for a fixed value of Ε the
trajectories of this equation are circles of radius p, where

(7) p»

In Example 11 the "Larmor radius" is ρ = y/(2E)/H. The form of
gyroscopic forces is Ω = Hda, where da is the element of area on the unit
sphere. It is not exact, since the total flux of the magnetic field through the
sphere is AitH Φ 0.

Example 13. The rotation of a rigid body with a fixed point in an
axisymmetric field can be described by the system of Euler-Poisson equations
(in mobile space)

Μ = Μ χ ω -f e X V, e = e X ω.

Here Μ = /ω is the kinetic momentum of the rigid body, ω its angular
velocity, / the inertia tensor, e the unit vector along the axis of symmetry of
the field, and Vie) the potential. It is not hard to show that in a fixed level
of the area integral

{(M, e ) 6 R c : W , i > = c , <e,c> = 1}

there arises a system with gyroscopic forces. The two-dimensional sphere S2

serves as configuration space, and the form Ω,. is not exact for c Φ 0, since

(S) J
s»

A related example is provided by Kirchhoff's problem of the motion of a
rigid body in an unbounded ideal fluid (see [23]). We fix the constant
Kirchhoff integrals (e, e > = ρ Φ 0, (Μ, e) = c. The corresponding integral
level is a four-dimensional manifold diffeomorphic to the tangent bundle of
S2. On S2 there arises a system with gyroscopic forces; their form is not
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exact for c Φ 0 because of (8), which is also true in the Kirchhoff problem
(see Novikov [8]).

We return to the general case and consider a domain Q C Μ such that Ω
is exact on Q : Ω = d(x>Q. Suppose that χ : [0, 1 ] -»· Μ is situated entirely
in Q. Then on this curve we can define the abbreviated action

ι

where I· \h is the Jacobi metric (equal to 2y/((h + L0)L2); see §2). We fix a
collection of 1-forms ωρ for all domains Q where Ω is exact. If the curve
x(') lies in ^ Π Q2, then Ω = do)Ql = daQt, therefore,

^ι(*(·))-η.(*(·))= J (ωβι-ωο,).
χ(·)

Since Ω is closed, by Stokes' formula the value of the integral does not
change when .xr(·) varies as a curve with fixed end-points or as a closed
curve. Consequently, the set of local values FQ(X(·)) determines a "many-
valued functional" on the space of closed orientable curves K+ and on the
space of paths K(xx, x2) joining xx, x2 £ M. We may assert that 6F* is a
uniquely determined 1-form on K+ (or on K(xx, x2)), however, its integral
along different paths in K+(K) (which are variational curves) gives, in general,
a many-valued functional on K+ (or K(Xi, x2)). Since locally F* can be
assumed to be single-valued, it has all the local properties of the classical
action (in particular, Theorem 1 and the index theorem of Morse, etc. are
true). The many-valued functional F* becomes single-valued after transition
to an infinite-sheeted covering Κ -+ K+ (or K(xlt x2) -+ K(xu x2)), however,
in contrast to the classical Morse theory, the single-valued functional F* need
not be bounded below on Κ (or K). This circumstance creates additional
difficulties in the study of existence problems of periodic trajectories or
trajectories with fixed end-points by the method of gradient descent.

Many-valued functionals were introduced by Novikov. In his papers ( 1 )

[6] -[8] an extended Morse theory is constructed for the case of periodic
variational problems. Before passing to a brief account of Novikov's results
we give two examples to show that Morse theory is not applicable to
many-valued functionals in Κ{χγ, χ2). The first of these supplements
Example 3.

Example 14 [6]. We consider the problem of the motion of a charged
particle in a constant magnetic field in R2 (see Example 11). For a fixed
value of the energy, since the Larmor radius is bounded, it is impossible to

reader should be aware of certain inaccuracies in [6] -[8] . They are connected
with the fact that in these papers the space of oriented closed curves without self-
intersections is discussed. However, the application of the gradient descent in the
irreversible case may lead to the appearance of self-intersections. For a somewhat more
precise account, see [24].
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join any two points R2 by an extremal of F*. The reason is that F* is
unbounded below on K(xlr x2). For when we join any two points xlt x2 £ R2

by a long curve γ, and a short one y2, then clearly, f * ^ ) ~ F*(y^ly1). The
action F* on the closed curve γ, 1 ?! is made up of two quantities: one of
them is proportional to the length of 7i and the other to the area inside
ΥίιΥι· By increasing y1 and choosing its orientation we can make F*(7i) tend
to -°°. It may seem that this phenomenon is due to the fact that R2 is non-
compact. The next example shows that this is not the case.

Example 15 [6]. We consider the system with gyroscopic forces of
Example 12. For a fixed value of the total energy Ε and large values of the
intensity of the magnetic field Η the Larmor radius is small (see (7)), this
again leads to the conclusion that the two-point variational problem is
unsoluble. In this example the configuration manifold S2 is compact,
however, F* is unbounded.

In contrast to the two-point problem, the periodic problem of the
variational calculus always has a trivial solution: the one-point curves
x(t) = χ0 at which F* has a local minimum (see 1.3).

3.2. Periodic trajectories of systems with gyroscopic forces.
Theorem 7 [6]. // the configuration space Μ is compact and simply-
connected and if FP{M) Φ 0, then for all values of the total energy
h > max(-L0) the equations of motion have a periodic solution with the
given energy h — L2~ Lo.

one-point
curves

Fig. 8

The validity of Theorem 7 can be checked by the following arguments.
As already mentioned, F* always has the trivial one-point extremals x(t) = x0.
They form an «-dimensional submanifold Ν C K+ that is diffeomorphic to M.
Each of these extremals is a local minimum of F*. On any sheet of the
cover f: Κ -> K+ the full inverse image

= N0 υ ΛΓΙ u · · .
gives a manifold of local minima of F*. Since Μ is simply-connected, there
is a natural homotopy g : Μ χ [0, 1 ] -> Κ joining 7V0 to Νχ (Fig. 8). We
restrict F* to Μ χ [0, 1 ] and begin to "shift" g downwards relative to the
gradient of F*; here the ends 7V0 and TVj are not moved. Since IP(M) Φ 0,
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we see that π2(Μ) Φ 0, consequently, K+ is not simply-connected. The
gradient descent gives us the required non-trivial stationary "saddle" critical
point.

Theorem 7 has a number of non-trivial applications.

Theorem 8. The equations of the problem of the rotation of a rigid body
about a fixed point in an axisymmetric field, for fixed values of the area
constant c — (M, e ) and energy h > max Vc {here Vc = V+ c2/{2Ke, e >) is
the reduced potential), have at least one periodic motion.

The proof follows from Theorem 7, when we take into account that S2 is
compact and simply-connected, S2 being the configuration space of the
system (see Example 13). If c — 0, then we can assert more: for all
h > max Vo the equations of rotation of a rigid body have at least six
distinct periodic trajectories (their projections onto the sphere are three
distinct closed non-self-intersecting curves). The fact is that for c = 0 the
system is natural and for a fixed value of h > max Vo the Riemannian space
(S2, I· I,,) has three distinct closed geodesies (see §2.1). For the Kirchhoff
equation a result similar to Theorem 8 holds (see [8]).

Remark. In the case of a homogeneous force field, in the dynamics of a
rigid body there are many particular solutions which for the most part are
periodic. Using, for example, a result of Steklov [32], we can prove that
there are periodic solutions on all compatible non-critical levels of the energy
and momentum integrals (and not only for sufficiently large values of h),
provided that the centre of mass of the body lies on the axis of inertia.
The Steklov periodic solutions can be expressed in terms of elliptic functions
of time.

In the case of non-simply-connected manifolds we can use the following
proposition to prove the existence of closed trajectories.

Proposition 8. // there is a closed curve y on which F* < 0 that is homotopic
to zero, then for h > max(-/,0) there is at least one periodic trajectory.

The proof can be deduced from the fact that F* has a local minimum
zero on one-point curves. If F* is negative on a curve 7 homotopic to zero,
then an application of the method of gradient descent gives us a saddle
critical point. When Μ is simply-connected, Theorem 7 and Proposition 8
give different periodic trajectories.

As an example we consider the motion of a charged particle in R2 = {x, y)
in a magnetic field that is periodic in χ and y (see Example 11). If the
mean value Η Φ 0, then there are closed curves in R2 on which F* < 0
(on T2 they are homotopic to zero). Consequently, there is a periodic
trajectory of any positive total energy. (Here the charged particle rotates in
the same way as in a constant magnetic field.)
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3.3. Applications of the generalized geometric theorem of Poincare.
In some cases the existence of periodic trajectories of mechanical systems

with gyroscopic forces can be established by a generalization of the well-

known geometric theorem of Poincare on fixed points of symplectic

diffeomorphisms. As an example we consider the motion of a charge in the

"Euclidean" two-dimensional torus Ta = {x, y mod 2JI} under the action of a

magnetic field with intensity Η: Τ2 -*• R2 (see Example 1). The motion of

the charge can be described by the equations

χ = — H(x, y)y, y = H(x, y)x.

The total energy (x2 + y2)/2 = h is, of course, preserved.

Theorem 9^\ If Η does not vanish, then for each fixed value of h > 0

there are at least four closed trajectories, counting multiplicities, and at least

three are geometrically distinct. If ΐΡ(χ, y) > h for all (x, y) G T2, then

there are at least four {counting multiplicities) closed trajectories homotopic

to zero.

Proof(2λ For all ft > 0 the energy surface x2 + y2 = 2ft is diffeomorphic to

the three-dimensional torus T 3 with angular coordinates x, y, ψ = arctan(}>/.Y).

The equations of motion on T 3 have the following form:

χ = j/~2/i cos φ, y — \ 2/isinq), φ~Η(χ, y).

Since Η Φ 0, the angular variable φ varies monotonically. To be definite,

suppose that φ > 0. We rewrite the equations of motion, taking φ as a new

"time":

, _ \TTh cos φ , _ /2ft sin φ . v _ d(-)
X ~ Η ' y Η ; l ' J ~~3φ~·

The phase flow of these equations preserves the symplectic structure

H{x, y)dx Λ dy. Let χ -*- χ + /(χ, y), y .-* y + g(x, y) by a symplectic

transformation of T2 ={x, y mod 2π} onto itself, which is the map after

time φ = 2π (Fig. 9).

(1)See Theorem 2 of [24].

idea of this proof was found independently by Arnol'd.
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It can be shown that this map preserves the centre of gravity of T2, that is,

j j fHdx/\dy= J j gHdx/\dy = Q.
*TS T2

According to the generalized Poincare theorem as stated by Arnol'd ([25],
Appendix 9), and the completeness proved in [11], this map has at least
four fixed points per period (counted with multiplicities), among which
there are necessarily three that are geometrically distinct. To complete the
proof it remains to verify that 1/ I, \g\ < 2π if min H2 > h. For example,

2π 2π 2n

0 0 0

hence !/ I < 27r(y7z/min I .//I), as required.

Remark. We complicate the problem by adding potential forces with
potential V : T 2 -* R. We consider the motion of a charge under the
condition that max V < h. Since

varies monotonically if

\H\ > v n 1 +t7/y 2 (A - F>.
This inequality guarantees the existence of three periodic trajectories with
energy h. If h < max F, then φ does not vary monotonically everywhere,
therefore, in this case we cannot say anything definite on the presence of
closed trajectories.

We mention one approach to the four cycles on the torus with a magnetic
field as suggested by Arnol'd. For this purpose, fixing the centre of gravity
of a disc on the torus and its "magnetic" area

we minimize the length of the boundary. If the resulting function of the
centre of gravity, regarded as a point on T2, turns out to be smooth, then its
critical points (and there are at least four, counting multiplicities) give us
closed trajectories bounding a fixed area. Varying the area between zero
and infinity, we obtain closed trajectories of a given energy. This programme
has not yet been realized. The attraction of this approach lies in the
possibility of generalizing it to surfaces other than tori. True, we must give
a suitable definition of the centre of gravity. Apparently, the number of
distinct closed trajectories on any compact surface Μ with a non-zero
magnetic field is bounded below for all h > 0 by the category of M.

We discuss next the problem of the motion of a charge on the sphere in a
magnetic field (Example 12). In the absence of a magnetic field the point
moves periodically over long curves. Seifert's theorem [2] implies the
existence of periodic trajectories when a small magnetic field is added.
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§4. Asymptotic solutions. Application to the theory of stability of motion

In this section we consider the motions of mechanical systems that tend
to positions of equilibrium as time increases without bound. To this
problem we can reduce the study of motions asymptotic to a given motion
of arbitrary form (not just to equilibria). For let xo(*) be a solution of
Lagrange's equation [L(x, x, t)]x = 0. We put y = x-xo(t) and
L{}>, y, t) = L('y + x0, y + x0, t). Obviously, y(t) Ξ Ο is a solution of [Ly] = 0.
If x{t) ->• xo(t) as t -> °°, then y(t) -» 0.

4.1. The existence of asymptotic motions.
We consider a non-autonomous Lagrangian system (M, L) with a smooth
Lagrangian L : TM x R ^ R . Let <,) be a complete Riemannian metric on M.

Definition. The Lagrangian system (M, L) is called regular if there are
positive constants cx, c2, c3, and c4 such that

1) cx {χ, χ) — c2 < L(x, x, t),

2) c3{v, v)^L"..v-v^.ck {v, v)

for all (χ, χ, t) £ TM χ R and υ £ ΓΛί.
If the configuration space is compact, then the definition of regularity is

independent of the choice of the Riemannian metric on M.

Example 16. Suppose that the Lagrangian is periodic (or almost periodic),
depends on time, and has the form

L = -z-{x, x)t + (v (x, t), x)t-\-U (x, t),

where <, )f is a time-dependent Riemannian metric on Μ, ν is a smooth
vector field, and t / : M x R - > R i s a smooth function. 1) and 2) are
necessarily satisfied if <, )t is complete for all t and <u, v)t and U are
bounded above.

Throughout this section 1) and 2) are assumed to hold. These conditions
guarantee the existence in the large of a smooth Hamiltonian function
Η : Τ*Μ χ R -»• R, dual (in the sense of the Legendre transformation) to the
Lagrangian L. We introduce a smooth function Ho :M χ R ->· R by restricting
Η to the set of points of T*M χ R where the canonical momentum is

We assume that the equation L = 0 has the solution x(t) = a = const, so
that α is a position of equilibrium. Without loss of generality we may
suppose that HQ(a, t) = 0.

Definition. A function / / 0 : M x R - > R i s called negative definite if for any
neighbourhood D of a there is an ε > · 0 such that //(.r, t) ^ —ε for all
χ £ D and t £ R.
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Theorem 10 [26]. If Ho is negative definite, then for any x0 £ Μ and τ £ R
there is a motion χ : [τ, +°°) -• Μ such that x(r) = x0 and x(t) -*• a as
t -> +00.

To establish the existence of motions asymptotic to an equilibrium
position a as / -> —°° it is sufficient to apply Theorem 7 to the Lagrangian
system (M, L), where L(x, x, t) = L(—x, x, —t). If x{t) is a motion of the
Lagrangian system (M, L), then x{~t) is a motion of the system (M, L).

Proof of Theorem 10. We may suppose that L{0, a, t) = 0 for all t. From
the definition of the Legendre transformation and the regularity condition it
follows that

Η — sup(y-x-L).

Consequently,

(9) L(x, x, t) > — H0(x, t) > 0 = L(0, a, t).

Let _Y0 Φ a and r £ R . We introduce the set Ω(χ0, τ) of piecewise-
continuously differentiable curves χ : [τ, +<*) ->· Μ such that χ(τ) — x0 and
x(t) Ξ a for all sufficiently large t > τ. On Ω(χ0, τ) there is defined the
Hamiltonian action

τ

Let d be the distance between points of a complete Riemannian space
(M, (,)). For any curve x(·) from Ω(.¥ο, τ) and times t2 > ?i > r the
Cauchy-Bunyakovskii inequality shows that

2 j

The regularity condition 1) implies that

(10) <?(*(*!), x ( ^

For Γ > r we denote by Ω τ the set of curves x(') G Ω(χ0. τ) such that
x(t) =a for t~>T. By (10), F is uniformly bounded and uniformly
continuous on any subset Ω Γ on which it is bounded. Consequently, by
Arzela's theorem, when we take into account that F > 0, we see that
F: Ω Γ -*• R attains its greatest lower bound on some continuous curve
χτ: [τ, T] -* M. It follows from the regularity condition that χτ(·) £ Ω Γ

(see [27]).

The function Τ>-+ F(xT), Τ > r, is continuous, non-negative, and non-
increasing. From (10) it follows that the family of curves {ζτ(·)}τ>τ0

(τ0 > r) is uniformly bounded and equicontinuous. Since d is complete, by
applying Arzela's theorem again and using a diagonal process we can find a
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sequence τη -»· +°° such that for any Τ > τ the sequence Xtn(·) converges to

a continuous curve χ : [τ, +°°) -*· .Μ, uniformly on [r, Γ ] . Since
xT : [τ, Γ] -»- Λ/ is a minimum of F in the class of curves with end-points at

x0 and xx (Τ), the limit curve χ : [τ, Γ] -> Μ is an extremal of F in the set of

curves with end-points at x0 and x(T) = lim x t (71)· Consequently, x(·) is a
motion and n " " c

^ r

| 'L(i(i), x(t), t)dt = lim f L(iTn(«). *xn(*), t)dt^lunF(x,n).
τ τ

Thus,
CO

(11) J L(x(t), x(t), t)dt^int{F(x(.)): »(.)6»(«o. τ)}.
τ

Since Ho is negative definite, from the convergence of (11) and from (9) it

follows that x(t) -*• a as t -> +<».

Example 17. To the Lagrange function of Example 16 there corresponds
the Hamiltonian function

B = -T<V, V)1-vv(x, t) + ±{v, v)t + V(x, t),

where <,)* is the quadratic form on ΤχΜ adjoint in the metric <, )f on TXM.
If χ = a is a position of equilibrium, then by Theorem 10 motions asymptotic
to a exist if for all χ Φ a and ( G R

(12) 4- <i> (i, t), υ (x, t))t + V(x,t)<V (a, t).

In the autonomous case the existence of asymptotic motions can also be
established as follows. If (12) is satisfied, then the integrand for the
Maupertuis action (that is, 2y/{L0L^) + L{) is positive definite in M\{a).
Consequently, the Maupertuis action attains its least value on the set of
piecewise smooth curves on Μ with end-points at x0 and a. This value is
attained precisely on the trajectory of the reuqired asymptotic motion.

Theorem 11 [28]. Let H0:M χ R -> R be negative definite and Μ
compact. Then there is a motion χ : R ->• Μ that is doubly-asymptotic to
the position of equilibrium a EL Μ {that is, x(t) -» a as t -*• ±°°).

4.2. The action function in a neighbourhood of an unstable equilibrium.
Again we assume that H0:M χ R ->· R is negative definite in a neighbourhood
of a position of equilibrium χ = a. We define a function S :M χ R -* R by

S(X,T) = inf{F(*(·)): *(·) 6 Ω(χ, τ)}.

By Theorem 10, with any point (x, r) Ε Μ χ R we can associate an
asymptotic motion ζ : [τ, +<*.) -*• Μ, ζ (τ) = χ, lim z(t) = a.

t



Calculus of variations in the large and classical mechanics 65

Proposition 9. If the Lagrangian L is periodic in t then

(a) lim ζ (t) = 0,
t-oo

oo

(Ρ) ίζ,(ζ(ί), z(t), t)dt = S(x, τ).
t

Proof. Let Τ be the period of the Lagrangian. From the convergence of
(11) it follows that for large T' the Lagrangian becomes arbitrarily small at
certain points of the interval [Τ', Τ+ T']. But (9) shows that at these
points ζ is small. Now (a) follows from this remark and the continuity in t
of the equations of motion; (β) is a consequence of (a) and (11).

Remark. Proposition 9 is, of course, true under more general assumptions
on the explicit dependence of the Lagrangian on time.

The action function S is positive definite and continuous, but need not be
differentiabie.

Theorem 12 [26]. Let L be periodic in t, and for any time let a £ Μ be a
non-degenerate maximum of Ho. Then there is a neighbourhood D C Μ χ R
of {a} x R such that

a) for any point (x, r) £ D there is a unique motion ζ : [τ, + °°) ->· Μ
asymptotic to a point a inside D;

β) S is smooth in D, has a fixed minimum on {a} x R, and satisfies the
Hamilton-Jambi equation S't-\-H{S'x, x, t) = 0;

7) if y is the momentum along the motion z(·). then y(t) = Sx(z(t), t).

By the stable manifold theorem (see, for example, [29]) the phase
trajectories of the system (M, L), asymptotic to {y, x) = (0, a) £ T*M fill
out a smooth invariant submanifold W C T*M χ R, which projects
diffeomorphically onto some neighbourhood of {α} χ R. This proves a).
We represent W as the graph of a smooth map f.D -> T*M χ R. If
ζ : [Τ, +ΟΟ) -> Μ, ζ (τ) — χ, is a motion asymptotic to the equilibrium ζ = a,
then 'z(t) = H'y(f{z, t), z, t). By the theorem on the smooth dependence of
solutions on initial data, the function z(t, x, r), ζ{τ) — χ, is smooth and with
it the action function S(x, r) also depends smoothly on (x, r) £ D. Using
Proposition 9 (β) it is easy to find that

dS(x, τ) = y(x, x)dx — H(y(x, τ), χ, x)dx, y = f(x, τ).

Hence, we obtain the formulae y = Sx and S'T + H(S'X, χ, τ) = 0, as required.

Example 18. We consider a natural mechanical system (M, (,), V). Let
α £ Μ be a non-degenerate local maximum of the potential energy V.
Theorem 12 asserts that the trajectories asymptotic to a intersect the level
surfaces of the action function S(x) at right angles (in the sense of the
metric (,)); S itself satisfies a non-linear equation
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If the condition of non-degeneracy of the equilibrium does not hold, then this
equation cannot have smooth solutions. Here is a simple example (see [30]):

(13) 5i* + ^ 1 = x*+8a;2i/2 + i'4. ε > — 2 .

It is easy to show that (13) for ε φ 2 and ε φ 6 does not have an infinitely
differentiable solution in a neighbourhood of χ = y = 0. Non-smooth
solutions may exist. For example, (13) for ε = 7 has the solution
Six, y) = xyy/ix2+y2) of class C2.

In conclusion we mention that the statement of the problem and the first
results on the existence of asymptotic motions of conservative mechanical
systems occur, apparently, in papers of Kneser in 1897.

4.3. A theorem on instability.
If the Lagrangian system iM, L) has a motion asymptotic to a position of
equilibrium uGM, then for the system iM, L), where L is obtained from L
by a transformation of time, this equilibrium, obviously, is unstable. Thus,
according to Theorem 7, a sufficient condition for instability is that the
function Ho '• Μ χ R -»• R is negative definite. This condition can be relaxed.

Theorem 13 [26]. If Ho<0 for all (x, t) G Μ χ R, then for any ε > 0,
x0 G M, and r 0 G R there is α τ > τ0 and a motion χ : [τ0, τ] -*• Μ such that
x(r0) = x0, X(T) = a, and \ x(x) | ^ ε.

To prove instability it is sufficient to apply the theorem to the Lagrangian
system iM, L). Theorem 13 is proved by the method of §4.1.

Example 19. A condition for the instability of an equilibrium for the
seminatural system of Example 16 is (12) with a non-strict inequality sign.
In the autonomous case this was noted by Hagedorn [31 ].

4.4. A compound pendulum with an oscillating point of suspension.
We apply the general results established above to the motion of a planar
«-linked pendulum (see Example 6) with a vertically oscillating point of
suspension. The Lagrange function has the following form:

η

" )lil} cos (0* — &) θ'ΐΚ +

η η

+ /(*) Σ Mthsin&b* — g Σ Μtlt cos &,

where Mt — Σ 7 7 1 ^ a n ( * fit) is the height of the point of suspension. Since
i-i

the configuration space T n = { θ mod 2π} is compact, the system (T", L) is
regular if f2it) is a smooth bounded function of time. Let a = in, ..., n) be
the upper position of equilibrium of the pendulum.
Proposition 10. If for all t

(14) f*<gmin(m.lt/Mt),

then (12) is satisfied.
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This remains true if in (14) and (12) the symbol < is replaced by <.

Corollary. For η = 1 the upper position of equilibrium is unstable if
f\t)<glforallt G R.

Remark. A sufficient condition for stability in the linear approximation,
obtained f o r / > / by the method of averaging, has the following form:

/ > gl (Bogolyubov [33]).
If (14) is satisfied, then by Theorem 10 there are motions of the

pendulum starting at an arbitrary moment of time and in an arbitrary
position and asymptotic to the upper position of equilibrium θ = a.
Moreover, according to Theorem 9, in this case there are motions of the
pendulum doubly asymptotic to a £ T".

Proposition 11. If fit) is even and satisfies (12), then there are at least
2" - 1 distinct motions of the pendulum that are doubly-asymptotic to the
upper position of equilibrium.

For apart from the upper, there are 2" - 1 positions of equilibrium a,- that
are invariant under the map Φ ->- —θ (see §2.4). Let χ : [0, +°°) -> T",
x(Q) — at, be a motion of the pendulum asymptotic to a as t -> +°°. Since
the map (θ, ft, t) —• (θ, — ϋ , —t) preserves the Lagrangian, θ(ί) = —•&(—t)

is a motion asymptotic to a as t -> -°°. Since θ(0) = ό(0), we see that
•&: R -> T" is the required doubly-asymptotic motion.

4.5. A theorem of Gaidukov.
We consider the question of the existence of geodesies on Riemannian
manifolds asymptotic to closed geodesic lines. By elementary methods of
the calculus of variations Gaidukov has proved the following theorem.

Theorem 14 [40] . Let Μ be a smooth compact oriented two-dimensional
Riemannian manifold. For any χ Ε Μ and any non-trivial class π of paths in
Μ freely homo topic to zero there is a geodesic containing χ and asymptotically
approximating some closed geodesic of the class π.

By the Maupertuis principle this result holds for trajectories of a natural
system with configuration space Μ for sufficiently large values of the total
energy. With the help of Theorem 14 we can prove the following result.

Proposition 12 141 ]. Let Μ be a torus with angular coordinates φχ and ψ2.
For any real λ and any (φλ, φ2) there is a geodesic φ{ = <Pi(s), φ2 — φ2{5)
such that

= ( Φ ι , φ2)β,

2)

In the case of a rational "rotation number" λ this result is a direct
consequence of Theorem 14. We mention that the geodesies in question are
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minimal in the covering surface. Proposition 12 has the following more
precise version.

Proposition 13. Suppose that T 2 is equipped with an analytic metric, that
does not differ much from the Euclidean metric, and that λ is a real
irrational number with "good" arithmetic properties: \n\- m\> a/ \n 1̂  for
some α, β > 0. Then there is a fibration of T 2 into minimal geodesies {in
the covering surface) with rotation number λ.

It is easy to construct counterexamples for metrics on T 2 far removed
from the Euclidean metric. In addition to arguments of the calculus of
variations, the proof of Proposition 13 uses results of KAM-theory. J. Moser
has proved a more general theorem on the existence of a fibration into
minimal hypersurfaces of a many-dimensional torus with a metric close to
the standard one, moreover, the minimal surfaces in the covering space are
close to hypersurfaces with "good" arithmetic properties^ \

In conclusion we state some unsovled problems.
1) To prove Theorem 14 in the case of a many-dimensional Riemannian

manifold.
2) Proposition 12 apparently admits the following generalization: if Μ is

not homeomorphic to a sphere, then through each point in the covering
space there passes a minimal geodesic asymptotically approaching a given
point of the absolute.

3) Is the assertion of 2) valid in the many-dimensional case? In particular,
let Μ be an «-dimensional torus with angular coordinates φ1, ..., φη. To
prove that for any real numbers λ^ . . ., λ,,^ and any (φ1, ..., φη)0 there is a
geodesic φ{ = î ,-(s), 1 < s < n, such that φ,·(0) = {ψ()0 and

lim <pt (s)/<pn (s) = λ, ( l < i < n - i ) .
i-»oo

4) We assume that the potential has a unique maximum in M. To prove the
existence of trajectories asymptotic to the maximum point on the one side and
to a closed trajectory of non-trivial homotopy class on the other side.

5) Under the same assumptions, to prove the existence of trajectories
doubly-asymptotic to the maximum point and rotating around a loop of
non-trivial homotopy class.

Using the method of [17] it can be proved that the number of distinct
doubly-asymptotic trajectories is bounded below by the rank of the
fundamental group of the configuration space. For simply-connected
manifolds the existence of doubly-asymptotic trajectories was established by
Bolotin [21].

4) and 5) have also been stated by Arnol'd in connection with the
analysis of the transition of a Hamiltonian system through resonances (see
[38]). From the point of view of this problem not only Riemannian but
also "Lorentzian" metrics are of interest.

^ A lecture at the Conference dedicated to 50 years of the Steklov Mathematics Institute.
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