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ON THE INTEGRABILITY OF HAMILTONIAN SYSTEMS
WITH TORAL POSITION SPACE
UDC 517.9+531.01

V. V. KOZLOV AND D. V. TRESHCHEV

ABSTRACT. This paper considers the problem on the complete integrability of a Hamil-
tonian system with a toral position space, with Euclidean kinetic energy and a small
analytic potential. Necessary integrability conditions are found in the case when the
potential is a trigonometric polynomial. These conditions are also necessary condi-
tions of existence of additional first integrals, polynomial in the momenta (with no
assumption on the smallness of the potential). The proofs are based on a detailed
analysis of the classical scheme of perturbation theory. The general results are applied
to the study of the complete integrability of the well-known problem on the motion
of n points along a line with periodic interaction potential. In particular, the nonin-
tegrability of the “open” chain of interactions of particles is proved for n > 2; the
“periodic” chain is nonintegrable with the additional condition that the potential be
a nonconstant trigonometric polynomial. Conditions for complete integrability of the
generalized nonperiodic Toda chain are discussed.
Bibliography: 17 titles.

Introduction. Main results

Following Poincaré ([1], Chapter I, §13), we consider the “general problem of
dynamics”, connected with the study of Hamiltonian systems of the form

OH OH
Xs = —2—, Yy= —, 1<s<n, H= H,(x, 0.1
= T o <s<n Ho(x) +eH (x, y) + (0.1)
the functions Hy(x,y) are assumed analytic and 2z-periodic with respect to
Yi.-..,¥Yn; € 1s a small parameter. Equations (0.1) are frequently encountered in
applications.

For ¢ = 0 we have a completely integrable Hamiltonian system for which the
variables x and y mod 27 are action-angle variables. Since system (0.1) has the first
energy integral ), ., Hy e, it is natural to consider the problem on the existence of
additional integrals in the form of series }°, ., Fi(x, y)eX with analytic coefficients
2n-periodic with respect to y. The formulation of the problem as well as the first
results in this direction belong to Poincaré (see [1], Chapter V, and [2]). With respect
to generalizations, see [3] and [4]. It is well known that the problem on the existence
of a complete set of independent integrals of the form 3 FyeX is closely related to
the possibility of carrying out the classical scheme of perturbation theory (see [1],
Chapter IX, [4], and [5], Chapter 4).
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In this paper we consider Hamilton’s equations (0.1) whose Hamiltonians have
the form

H = Hy(x) + eH,(y), (0.2)
where Hy = % > a;jx;x; is a nondegenerate quadratic form with constant coeflicients,
and H, is a trigonometric polynomial in yy,..., y,. The systems with Hamiltonians

(0.2) preserve the essential features of the general case; however, their analysis is
technically simpler. Since the Fourier series of the perturbing function H, contains
only finitely many harmonics, to systems with Hamiltonians (0.2) one cannot apply
Poincaré’s results and their well-known generalizations.

The Hamilton equations (0.1) with Hamiltonian (0.2) may be regarded as equa-
tions of motion of a mechanical system with a configuration space T", a kinetic
energy Hy and a small potential ¢H,;. We emphasize that we do not require that the
quadratic form Hj be positive definite.

Let us agree on some notation. Let &£ = (&;,...,&,) and n = (m1,...,1,). We set

(é"])zzéi"i’ (é:’7>= Zafjélnj
i=1 ij=1
Let
Hi =) hne'™,  h, = const. (0.3)

We denote by 9 the finite set of integer vectors m = (m,, ..., m,) such that A, # 0.
If H, # const, then 9 contains at least two elements. We remark also that 9 admits
the involution m — —m.

DEFINITION 1. A Hamiltonian system with the Hamiltonian Hy + ¢H, is called
Poincaré integrable if there exist n integrals in the form of power series

FO=F 0, y)+eFVe,y)+---,

whose coefficients are analytic functions on R” x T”, and the functions F, (()” ..... F(g")
are independent almost everywhere.

In connection with this definition we make several remarks.

1) We do not assume that the series (0.4) are convergent for small ¢ # 0. This
requires some explanation. The formal series ) f;&° is assumed to be zero if all
f; = 0. The series F = 5" Fy&* is a formal integral of the Hamilton equations with
Hamiltonian H = }_ H,,e™ if the formal series

{(HF}=Y) ( > {Hm,Fk}) &

520 \m+k=s

equals zero; here { , } denotes the standard Poisson bracket.

2) We do not assume that the integrals (0.4) are involutive. It turns out that, since
Hj is nondegenerate, any two integrals of (0.1) are automatically in involution (cf.
[6], §5).

3) In the case of two degrees of freedom (n = 2) the condition of independence of
the functions Hy and Fy may be replaced by the weaker and more natural condition of
nonidentical dependence (with respect to ¢) of the integrals Hy+¢H, and )_ F¢e°® (see
[1], Chapter V). More precisely, several formal series are assumed to be independent
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if some minor of maximal order of their Jacobi matrix is different from zero, the
minor being regarded as a formal series in &.

Let us now set ¢ = 1 and consider a Hamiltonian system with Hamiltonian function
Hy + H,.

DeFINITION 2. This Hamiltonian system is called Birkhoff integrable if there exists
a complete set (n altogether) of polynomial integrals with respect to the momenta
Xi,...,Xx, with analytic and 2z-periodic coefficients with respect to y;,...,y,, and
their highest-order homogeneous forms are independent almost everywhere.

We make some more remarks.

1) In the case of two degrees of freedom we replace the condition of independence
of the highest-order forms of the polynomial integrals by the weaker condition of
independence of the integrals as analytic functions in R? x T2,

2) We do not know of examples of completely integrable natural Hamiltonian
systems having no complete set of polynomial integrals.

3) It is well known (see, for instance, [7] and [8]) that integrals linear in the mo-
menta are connected with the existence of “hidden” cyclic coordinates, and integrals
that are quadratic in the momenta are connected with the existence of separated
canonical variables. As Birkhoff showed, these conclusions are valid also for polyno-
mial functions that are integrals at a certain level of the energy integral of the system
with two degrees of freedom (see [8], Chapter II).

PROPOSITION 1. If a system with Hamiltonian Hy + H, is Birkhoff integrable, then
a system with Hamiltonian Hy + ¢H, is Poincaré integrable.

For the proof we use the change of variables

y—y, x—x/Ve, t— et (0.5)

After that equations (0.1) are transformed into Hamilton’s equations with Hamilto-
nian Hy + ¢H|, and the polynomial integral becomes F + /e® (up to an unessential
constant factor), where F and ® are functions analytic with respect to ¢. Clearly,
F and @ are integrals of the system with Hamiltonian Hy + ¢H;, and one of the
independent terms F or ¥y coincides with the homogeneous form of highest degree
of the initial polynomial integral, as required.

As S. V. Bolotin has observed, the converse is also true. Indeed, let us assume that
the series

Y F(x,y)f, F:R'xT" =R, (0.6)

is an integral of a Hamiltonian system with Hamiltonian function Hy + ¢H,. The
inverse change of variables with respect to (0.5) takes this system into one with
Hamiltonian Hy + H;. The integral (0.6) is transformed into

SR (VEX,p)E = Y On(x,1)(VE)",

where the ®,, are polynomials in the momenta with periodic coefficients with respect
to y. Since this system does not contain the parameter ¢, the polynomials ®,, are its
integrals. In the case of two degrees of freedom this immediately implies the exis-
tence of a polynomial integral independent of the function Hy+ H,. The problem on
the existence of integrals with independent forms of highest degree in the multidi-
mensional case requires further study. In what follows we use only Proposition 1. We
remark that if the perturbing function H; depends on the momenta x, Proposition 1
is no longer valid.
The main result of our paper is the following.
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THEOREM 1. Let the quadratic form Hy be positive definite. Then a Hamiltonian
system with Hamiltonian function Hy + ¢H, is Poincaré (Birkhoff) integrable if and
only if the points of the set 9 lie on d < n lines that intersect orthogonally (in the
metric { , )) at the origin.

The proof of sufficiency is very simple. In fact, let /j,..., l; be the lines in R”
referred to in Theorem 1. We denote by k; # 0 the nearest point of the set Z" N /;
to the origin, and complement &, ..., k; by integer vectors k ., ..., k, to a basis in
R”. Then we make a linear transformation y’ = My with the nondegenerate integer
matrix
ki
M=
kn
and extend it to a canonical transformation x, y — x’, y’ by setting x’ = (MT)~}
In the new variables x’, y’ the Hamiltonian function Hy + H, is reduced to

d
Za,,x’2+22auxx- + i), (0.7)
i=1

j=1i>d

where a;; = const, and the f; are 2zm-periodic trigonometric polynomials. Clearly
the variables x’, y’ are separated and hence Hamilton’s equations with Hamiltonian
(0.7) have the following set of n independent involutive integrals:

1
F———( ’2+x2a,sx)+f,y,) 1<i<d, Fj = xj, j>d.

s>d

In the original variables x, y the integrals F; (i < d) are again quadratic in the impulse
functions with analytic coefficients on T” = {y}, and the integrals F; (j > d) remain
linear functions of x with constant coefficients.

COROLLARY 1. If Hamilton’s equations with Hamiltonian Hy + H, have n polyno-
mial integrals with independent forms of highest degree, then they have n independent
involutive polynomial integrals of degree no higher than two.

Consider k orthogonal lines in (R”,{, }) intersecting at the origin, and take two
points on each line, lying at the same distance but in opposite directions from the
point 0 € R”. We call the convex hull of these 2k points a k-dimensional rhomboid.
The number of /-dimensional faces of a k-dimensional rhomboid equals 2/*!(, +l)
in particular, this polyhedron has precisely 2k vertices and 2% faces. Clearly, a k-
dimensional rhomboid is a convex polyhedron dual to a k-dimensional parallelepiped.

CoROLLARY 2. If Hamilton’s equations with Hamiltonian Hy + ¢H, are Poincaré
(Birkhoff) integrable, then the convex hull & (M) is a k-dimensional rhomboid, k > n.

As an example let us consider a system with a potential of the form
Hi=Y fyi-v) (0.8)
i<j

where f(-) is an even function that is a nonconstant 2z-periodic trigonometric poly-
nomial (potential of twin interaction). One can prove that in this problem the con-
vex hull of the set M is an (n — 1)-dimensional polyhedron with 2(}) vertices. Since
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2(5) > 2(n - 1) for n > 2, then for n > 3 a system with potential (0.8) has no com-
plete set of polynomial integrals. This conclusion does not depend on the form of
the Euclidean metric (, ).

A particular case of this problem is considered in the paper of Adler and van Mo-
erbeke [9]: (, ) is the standard metric in R”, f = cos(-). This is a classical alternate
version of the Gross-Neveu system, which is well known in theoretical physics. Using
Kovalevskaya’s Ansatz, it is proved that for n = 3 and n = 4 for almost all initial
conditions the variables x; and exp(iy;) are not meromorphic functions of complex
time. In particular, the Gross-Neveu system is not integrable. We emphasize the fact
that algebraically nonintegrable systems may be completely integrable. As a simple
example let us consider a Hamiltonian system with one degree of freedom, whose
Hamiltonian function equals

x2/2+ fu(¥), (0.9)
where f, is a polynomial of degree n with simple roots. This system is algebraically
integrable only for n < 4; however, it is completely integrable for all n in the real

domain due to the existence of the polynomial integral (0.9).
It is interesting to observe that the system with Hamiltonian

SRS SR ) (0.10)

i<j

where f is the Weierstrass p-function (or its degenerate cases z 2, sin‘z(z), and
sinh~%(z)) is completely integrable for all values of n (see [10] and [11]). In [12] it
1s proved that in the case of three particles this is the only case when a Hamiltonian
system with Hamiltonian function (0.10) admits an additional integral in the form
of a polynomial of third degree in the momenta. We note that the problem on the
existence of an additional polynomial integral of a given degree is much simpler than
that of the existence of an mtegral in the form of a polynomial whose degree is not
specified beforehand.

Let us introduce in Z” the standard relation of lexicographic order, which we
denote in the sequel by <: g < J, if for the least index s such that g; # J, we have
o; < d;. We shall say that ¢ < ¢ if eitherg <Jd or g = 4.

DEFINITION. Let o be the maximal element of 9, and let § be the maximal element
of the set M\{a} linearly independent with o. We shall call the vector « the vertex
of M, and B the vertex of M adjoining «.

Leaving aside the trivial integrability case when all points of 97 lie on one line
passing through the origin, we assume in the sequel that the adjoining vertex f always
exists.

The proof of Theorem 1 relies upon the application of the following assertion,
which is of independent interest.

THEOREM 2. Let o and B be vertices of M, and assume that
m{a,a) +2{a. B) #0 (0.11)

for every integer m > 0. Then a Hamiltonian system with Hamiltonian function
Hy + €H, is not Poincaré integrable.

We emphasize that for the validity of Theorem 2 one needs only the nondegeneracy
of the quadratic form Hy. Theorem 2 is proved using perturbation theory. It turns
out that the independent coefficients of the integrals (0.4)—the functions Fés)——do
not contain angle coordinates y and are dependent at all points of the hyperplanes
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{(x,ma+ B) = 0. By the analyticity and the assumption on the linear independence
of a and B, the functions F(()” are dependent everywhere on R” = {x}. The points
x € R”" lying on the hyperplane (x, ma + ) = 0 correspond to resonance tori of the
nonperturbed integrable problem which collapse on the mth step of the perturbation
theory.

THEOREM 3. Let a and B be vectors in M satisfying the assumptions of Theorem 2.
If the Hamiltonian system with Hamiltonian function Hy+¢H, has n— 1 single-valued
analytic integrals

FO 4 eFD 4o FSD 4 B0

and the functions Fi",... , F{""" are independent at least at one point of T x T",
where T is the hyperplane (a,x) = 0, then Hamilton’s equations do not have an
integral independent of the functions F{" + eF\" +--- and F" " + eF""" + ... in
the form of a formal series Y F(x, y)e* with analytic coefficients in R" x T".

Theorem 3 and Proposition 1 imply the following.

COROLLARY. Assume that the vectors o, p € M satisfy the assumptions of Theo-
rem 2, and let T be the hyperplane {a,x) = 0. Assume that the system with Hamil-
tonian Hy + H, has n — 1 polynomial integrals F(V), ..., F""=Y whose homogeneous
SJorms of highest degree are independent at least at one point of I’ x T" ¢ R" x T".
Then Hamilton’s equations do not have an additional polynomial integral independent
of the functions F\V), ... Fn—1),

The plan of the subsequent exposition is as follows. §1 contains auxiliary results
connected with the detailed analysis of the classical scheme of perturbation theory
as applied to a Hamiltonian system with Hamiltonian function (0.2). Using these
results, in §2 we prove Theorems 2 and 3. §3 contains the deduction of Theorem 1
from Theorem 2. The paper is completed with the discussions in §4 of the possible
ways of generalizing Theorems 2 and 3, and some applications.

The authors are grateful to O. 1. Bogoyavlenskii and S. V. Bolotin for discussion
of the problems referred to in the paper.

§1. The secular set and its structure

We begin the proof of Theorems 2 and 3 with the exposition of some notions
of perturbation theory. The classical scheme of perturbation theory consists in the
following: one looks for a canonical transformation x, y mod 27 — u, v mod 27x:

x,-=GS/6y,-, v,-=65/8u,-, i=1,...,n,
with generating function
S=So(u.y)+eSi(u,y)+---,

taking the initial Hamiltonian Hy(x) + ¢H,(y) into a function Ko(u) + &K (u) + -
independent of the new angle variables v. If one succeeds in finding such a transfor-
mation, the original system is integrated. In particular, the functions u,(x, y,¢€),...,
u,(x, y, €) constitute a complete set of independent Newtonian integrals. The gener-
ating function S satisfies the Hamilton-Jacobi equation

Ho(85/0y) + eH\ (y) = Ko(u) + eKy(u) + - - . (1.1)

One usually sets Sy = (¢, y); then for ¢ = 0 one has the identity map and therefore
Ko(u) = Hyp(u). Expanding the left-hand side of (1.1) in series in powers of ¢ and
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equating the coefficients of equal powers of ¢, we obtain an infinite chain of equations

for the successive determination of S;,S,,... and K, K>,...:
0Hy 8S| _

1.2)
OH\ GS 0S8, 08, (
Y2 Z a;; Z Kom(u).

—~ u; Oy, T3 dyi 9y,
In the deduction of these formulas we have taken into account the fact that Hj is
a quadratic form in u. In perturbation theory one proves (see, for instance, [1],

Chapter IX) that equations (1.2) have a unique solution S;,S>,... in the form of
trigonometric series in yy,..., y, with zero independent coefficients:
Sm=3 Sh(x)el®), (1.3)
€z

Let us consider the first equation of (1.2) and solve it by the Fourier method.
Using (0.3) and (1.3) (for m = 1), we obtain

_ . dhg ]
K[—ho, Sl __(a),r)' T#O, (14)
here w = (wy, ..., w,), where the w; = 8Hy/0x; = 3 a;sx; are the frequencies of

the quasiperiodic motions of the unperturbed problem. From (1.4) one sees that
Sj is not determined at the points of R" = {x} lying on finitely many hyperplanes
(x,7) =0, 7€M, 17 # 0. We call the collection of all these points the first order
secular set, and denote it by B;.

The Fourier coefficients ST, m = 2, 3,..., are found by the inductive formula
1
St = 0,8)S7S?°. 1.5
21(a) T) uﬂ; (0.9) (1.5
o+0=1

This is a consequence of (1.2) and the notation (1.3). Clearly, the S7 may be repre-
sented as fractions whose denominators contain expressions of the form (w, 7) and
their products.

By the kth order secular set B, we mean the set of all points of R” = {x} such that
the following conditions hold:

1) (w(x), 1) =0, t#0.

1) (w(x), 7)Si(x) # 0.

ii1) On the hyperplane (w, 7) = 0 all functions S?, are analytic for m < k.

We set B = |J7° B,. We call this set the secular set of the perturbed problem. Since
the points of B are points of discontinuity for the Fourier coefficients of the function
S, in the sequel its structure plays an important role. Clearly, each set B, |J---|JBx
consists of finitely many different hyperplanes.

MAIN LEMMA. Assume that the vertices a and f of M satisfy (0.11). Then the set
By contains the hyperplane (ka + B, x) = 0. In particular, the secular set B consists
of infinitely many different hyperplanes, and its closure contains the hyperplane
(a, x) =

The rest of §1 is devoted to the proof of the Main Lemma.
From the definition of the lexicographic order it follows that a > 0 and a > y for
all y e m.
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LemMA L. S} =0 for all T > ra.

The proof is by induction over r. For r = 1 the lemma follows from (1.4) and
the definition of the vertex a. Assume that the lemma holds for all » < m. The
function S;_, is computed by (1.5). Let 7 > (r + 1)a. Let us prove that any term
in the right-hand side of (1.5) must contain the factor S}, for 1 > wa and w < r,
which equals zero by the inductive hypothesis. Indeed, if ¢ < ua and ¢ < va, then
0+ < (u+v)a = (r+ 1)a < 1. But this contradicts the summation condition
0 + Jd = 1. The lemma is proved.

LEMMA 2.
mea <a’ a>
"7 2im(w, a)

> uvSkeske. (1.6)

u+v=m
ProoF. We deduce (1.6) from (1.5), setting 1 = ma. We consider only the nonzero

terms in the right-hand side. According to Lemma 1 we have ¢ < ua, § < va, and
0+0 =ma=(u+v)a. Hence 6 = ua and 6 = va, as required.

LEMMA 3. .
(a,a) \"
mao — a\m
sme =K, (—i(w,a) (S, (1.7)
where KK
Ki=l, K,= Y WT (1.8)
ut+v=m

The proof is by induction over m. For m = 1, (1.7) coincides with (1.4). Assume
that Lemma 3 holds for m < r. Then

S(,H)” _ (a, a) Euﬂr:rﬂ uUKuKU (a’ a> u+v—2 (Su)u+w
r+l 2i(r + (w, a) i(w,a) !

= {00\ gayre

LEMMA 4. If the vector t is linearly independent of o and (m — )a+ < 7 < ma,
then ST = 0.

The validity of this assertion for 1 = 1 follows from the definition of the vertices
«a and B. Assume that it holds for all m < r. We use (1.5) for m = r + 1. By the
inductive hypothesis and Lemma 1, the product S?S? can be nonzero only in the
following cases:

1) the vectors a, d, and ¢ are pairwise linearly independent; or

2) eithero <ucand d < (v — a+ f,org < (u—1)a+ B and § < va.

In the first case the vector T is clearly parallel to «, and in the second we have
T=0+0 X (u+v—1)a+ f =ra+ B, as required.

LEMMA §.
1
R . S— , Suagrath 1.9
m+1 l(w,ma+ﬁ) uém <ua Ua'*'ﬂ) U v+1 ( )
u>0,0>0

Formula (1.9) follows from (1.5) and Lemma 4. We first note that either ¢ =<
(u—1l)a+pord < (v—1)a+ f. Otherwise the vectors o, §, « and ¢ + & are pairwise
linearly dependent. If we have simultaneously ¢ < ua and 6 < va, we obtain the
contradictory inequality ma+ f=0+6 < (u+v — 1)a+ f = ma + . Hence, by
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Lemma 4, in (1.5) we need to consider only the following pairs of vectors ¢ and J:
No=ua,d=(w-1)a+8;2)0=(u—1)a+ B, =va. In order to conclude the
proof it remains to use the symmetry of (1.5) with respect to ¢ and 6. The lemma
1s proved.

Let us transform (1.9):

1 ma+f _ <a’ Va + ﬂ) a; va+p
i(w, ma+ B)SIotF = ;M musg i(w, va + B)S!TTF. (1.10)
u>0,02>0
We introduce the following notation:
] , v+ f)
Xm = mST, = i(w, ma + B)STTA, [,:.(a——.
m m Ym+1 ( a ﬂ) m+1 1 z(w,va+ﬂ)
Then (1.10) may be written as
Ym+1 = Z Lo Xy Yot
u+t=m
u>0,v>0
LEMMA 6.
VYmel = AmX{" Y1, (1.11)
where ( )
_ _ -1 _ o, &
=l ap= T uKd el b=
U+v=m
u>0,02>0
The proof is by induction over m, applying (1.7).
Let us set uK, = r,. From (1.8) we obtain
Tyuly
n=1 =3 5 (1.12)
u+v=m
u>0,0>0
Taking the new notation into account, we have
am = Z ruh*'a,l,. (1.13)
U+v=m
u>0,2>0

LEMMA 7.

1—\/1—22=ir,,z".

n=1
COROLLARY. 1, = (2m — 3!/ m!! for m > 1.

PrROOF OF LEMMA 7. From (1.12) it follows that the power series f(z) = Y. r, 2"
satisfies /2 —2f 42z = 0. Since f(0) = 0, we have f(z) = 1 — /1 — 2z, as required.
From (1.13) we obtain successively
a =r|lo, a2=r2hlo+r,210!|,
az = r3h210 + rinhlgly + rirahlgl, + i'l:;f()[llz .....
LEMMA 8. For m > 1
am = > Fivmiolia=s = tm= i R oy 1, (1.14)

O0=jo<ji1< - <jy<m
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This is easily derived from (1.13) by induction over m.

Let us proceed to analyze the secular set. Since the vectors a and f# by assumption
are linearly independent, the hyperplanes (w,a) = 0and I, = {x: (w,ma + B) =
0} do not coincide. According to Lemma 1 the functions S? are analytic almost
everywhere on I',, for r < m + 1. In order to find out whether the hyperplane I',,
belongs to the secular set B, it is necessary to study the inequality y,,,; # 0. Let us

use (1.11). In it we have x; = S* and y, = i(w, B)S{;. The coefficients S and Sf are
nonzero according to (1.4) and the definition of the vertices « and . If (w, 8) =0
on the hyperplane I',,;, then the vectors @ and # must be collinear. However, this is
not so. Hence, x| # 0 and y, # 0. Therefore y,,,| # 0 if and only if a,, # 0. Let us
consider two cases: (a,a) = 0 and (o, o) # 0. In the first case we have 4 = 0 and (by
Lemma 8) a,, = ly/, - - . Since, according to assumption (0.11), {(a, B) # 0, then
all /; # 0 and, consequently, a,, # 0. In the second case we introduce the number
A = (e, B)/{a,a). At the points of the hyperplane I',, we have (w, ) = —m(w, o),
and therefore

Atv

Iy = h.

v—m
Since in our case k4 # 0, it follows from (1.14) that a,, = 0 if and only if 4 is a root
of the polynomial

Pn(x) = Z Fiv—jo " Tm—ji ((szjmoi Ejktj’/;,l)) (1.15)

O=jo<ji< < jyx<m

LEMMA 9. (1) , {
—_— m —
P = I — . .
= CU (o 2) e (5252 116
In order to prove Lemma 9 we consider the new polynomials
Py(x) 1
= A , - 1.17
Q) =T L &=y (1.17)
LEMMA 10. The following recurrence relation holds:
mQy = Z r(v —y)Qv. (1.18)
u+v=m
u>0,0>0
ProoOF. In (1.15) we make the change m — j; = i;_;,;. Then

Z X XxX+m—i X+ m—i

x
Pm(x)=_ﬁrm+ Tm—i Vig—~iy_, " T, ——

O<i| << <m -m _lk —h
Singling out the summation over i;, we obtain
X m+1
x)="=3 P (X)rm-i,, P=1
-miTo

This relation may be rewritten as follows:

- P,
k}_: (k= m =) ke
Setting x + m = y and P, = (n — y)@,, we obtain
-1
mQm(y) = D _ rm-k(k=y)Q(y), Qo=-
k=0
which is equivalent to (1.18).

3

’

1
v
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LEMMA 1. .
1+vT=2z\"

ZQn - (BE) (1.19)

PrROOF. We set g(z Zo Qnz". Then (1.18) leads to the following differential

equation for g:

dg dg
dz " < E‘J’&')f

Here f is the function of Lemma 7. Solving this linear differential equation with the
initial condition g(0) = —1/y, we obtain

<1+\/1_—*2?>2y,

8(z)=-= 3

y
as required.
The function (1.19) is analytic for small z. Let us find its Maclaurin series. We
)

1
set g(z) = F(p~'(2)),

where
L (1+2\>  1-22
ra-—5 () e
Since ¢’(1) # 0, we may use Biirmann’s theorem [13]:
o zm gm—1 , -
=50+ X T fommr|_ P (1.20)

where ¥ = (z — 1)/p(z) = -2/(1 z). From (1.19) and (1.20) we easily obtain

m!Qm=<2m2_l —y) <2m2—2_y>m<m;1 —y>.

Returning to the old variable x and using (1.17), we obtain (1.16) for the polynomial
Pp(x). Lemma 9 is proved. ‘

Let us continue the analysis of the secular set. Lemma 9 yields a,, = 0 on the
hyperplane 1",,, if and only if A = {a, B)/{a, a) coincides with one of the following
numbers: 0, — 2, —1,...,—(m - 1)/2. However, according to assumption (0.11), 4 #
—m/2 for all integers m > 0. Hence, the hyperplane I', = {x: (x, ma + ) = 0}
belongs to the secular set B,,,; € B. For m — oo the hyperplanes I',, accumulate,
clearly, at the limit plane (x, a) = 0. The proof of the Main Lemma is finished.

§2. Proof of Theorems 2 and 3
Assume that the n analytic functions

o o]
D=SN"FPx e, k=1,....n (2.1)
are first integrals of a Hamiltonian system with Hamiltonian (0.2). All functions F. (k)
are of course 2zn-periodic with respect to the variables yy,..., Vn-
LEMMA 12. The functions Fé” ..... F(()") do not depend on the angular variables
Vieeoos ¥Yn, and at the points of the secular set their Jacobian
a(FM, ... FMy 22)
o(xy,..., Xn) )

vanishes.
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Theorem 2 follows immediately from the Main Lemma of §1 and Lemma 12. In
fact, since the set B C R” consists of infinitely many different hyperplanes passing
through the origin, then B is a uniqueness set for the class of functions analytic in R”":
any analytic function vanishing at the points of B is zero everywhere on R". Hence,
by Lemma 12, the analytic function (2.2) is identically zero. This in turn means that
the integrals (2.1) are dependent for ¢ = 0.

The proof of Theorem 3 uses another auxiliary construction that goes back to
Poincaré ([1], §81).

LEMMA 13. Assume that the functions F",... ,Fé"_” are independent at some
point xg € T and Hamilton’s equations have an additional formal integral F =
5" Fy(x, y)e* independent of the functions FV), ..., F"=1, Then there exist a neigh-

borhood V of the point xo in R" = {x} and a formal integral

D= D(x, y)e
=0

with analytic coefficients in V x T" such that the functions Fé”, e Fé"‘” and Og are
independent in V x T".

The functions Fé”,...,Fé"_” and @,y actually depend on the variables x, by
Lemma 12. We do not give here the proof of Lemma 13 since it essentially re-
peats Poincaré’s reasoning in [1], §81. Theorem 3 follows now from Lemma 12, the
Main Lemma, and the fact that the intersection BN V is a uniqueness set for the
class of analytic functions in the domain V.

Lemma 12 generalizes the well-known assertion of Poincaré on the dependence

of the functions F(g”, cee, Fé") on the set B; (see [1], §82). We discuss the proof of
Lemma 12.

The first part of the lemma on the independence of the functions F(()k) of the
angular variables y(,..., y, was proved by Poincaré in [1], §82. The second part

may be deduced, for instance, from a result of [4] (Chapter II, §4.3), which we state
here as an auxiliary assertion.

LEMMA 14. Assume that Hamilton’s equations with Hamiltonian (0.2) have n first
Sformal integrals F\V, ..., F" such that

i) the F(()k) depend only on x|, ..., x,, and

i1) the Jacobian (2.2) is nonzero at all points of the domain D C R".

Then there exists a generating function S = 3 -oSm(u,y)e™ of the classical
scheme of perturbation theory whose coefficients are analytic in the direct product
D xT".

We deduce Lemma 12 from this. If the Jacobian (2.2) is nonzero at some point
Xo € B, it is nonzero in a whole neighborhood V' of this point. According to
Lemma 14 in the direct product V' x T" one can (at least formally) construct the
series of perturbation theory in powers of ¢ with analytic coefficients. However, by
construction of the secular set B at the points of {xp} x T" C V' x T" at least one of
the functions S,,, m = 1,2,..., is not analytic.

§3. Proof of Theorem 1
Let us make the canonical transformation x,y — x’,y’ by the formulas x’' =

(BT)~'x, y' = By, where B is an integer unimodular matrix. In the new variables
the Hamiltonian Hy + H, has the same form, and the set 91 is transformed into
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M = {m'}, where m" = (BT)~Im. Since the integer vectors m are transformed in
the same way as the impulses x, the fulfillment of the integrability condition (0.11)
may be verified in the original variables. In fact, let a and b be vectors of Z", and
let a’ and b’ be their images under the map m — (BT)~!m. Then

(a',b') = (BABTa',b') = (Aa, b) = (a, b).
Let us first prove Corollary 2 of Theorem 1.

LEMMA 15. Let a be a vertex of the polyhedron & (), let T be an adjacent edge,
and let B be the point of MNT that is nearest to a. There exists an integer unimodular
matrix B such that under the map m — m' = (BT)~'m the points o and 8 are mapped
into vertices of M.

The proof is based on an inductive application of the following well-known fact:
for every integer vector k; = (k!,..., k") with relatively prime coordinates there
exist m — 1 additional integer vectors k, ..., k,, such that detl]k}” = +1. Let / be
the greatest common divisor of the components of the vector  — 8, and let B; be
an integer unimodular matrix of dimension n x n whose lower row consists of the

components of the vector (a — #)//. Under the map
m — f(m), f(m)y=(B{)"'m

the vector (a — B)/[ is transformed into e, = (0,...,0, 1)7.
Now let us project the convex polyhedron & (90U), I = f(9M), onto the hyperplane
generated by the basis vectors ey, ..., e,_;. Then the edge I" = f(I') is projected onto

a vertex of the resulting convex polyhedron. Let us consider an edge A adjoining this
vertex. Using a suitable integer unimodular matrix B, of dimension (n—1) x(n—1),
one can make the edge A parallel to the (n — 1)st coordinate axis. Let us repeat this
operation n — 2 times. One can check that

il

is the desired matrix. The lemma is proved.

|

LEMMA 16. Let a and B be neighboring vertices of the polyhedron & (). If the
Hamiltonian system is completely integrable, the angle between the vectors a and B is
not less than /2.

This follows directly from Lemma 15 and Theorem 2.

LEMMA 17. Assume that a convex polyhedron in (R", (, }) is symmetric with respect
to the origin and the angle between the radius-vectors of any two neighboring vertices
is not less than n/2. Then this polyhedron is a rhomboid.

We carry out the proof by induction on the dimension of the polyhedron M. When
dim M = 1 the assertion is clearly valid. Assume that the conclusion of the lemma
is true for dimM < m. Let a be one of the vertices of an (m + 1)-dimensional
polyhedron, and let I, be the closed half-space in R™*! not containing a whose
boundary 911, passes through the origin orthogonally to the vector a. By assumption
all vertices of M that are joined with a by a vertex belong to I1,. Actually all vertices
of M except a lie in I1,. Indeed, assume that there is a vertex § not belonging to

I1,. The convex polyhedron M is the union of the set M,, the convex hull of all
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vertices except a, and the set R,,, the convex hull of the one-dimensional edges of M
adjoining a. The vertex f§ clearly does not lie in R,. The segment I joining a and §
lies entirely in the convex polyhedron M. However, I" has only one point in common
with R,, the point a, since otherwise I' C R,, and therefore the point § would not
be a vertex of M. On the other hand, the segment I" does not lie entirely in M,,, as
otherwise M = M,. We have reached a contradiction. Analogously, all vertices of
M except (—a) lie in I[1_,,. Thus, M is the convex hull of the points a, —a and the
convex hull of the remaining vertices of the polyhedron M lying in 8I1,. The latter
is a thomboid by the inductive hypothesis. The lemma is proved.
Let us proceed to prove Theorem 1.

LEMMA 18. Let P be a hyperplane in R", and assume that the points of the set
PNZ" C R" form a subgroup of Z" of rank n — 1. Then there exists an integer
unimodular matrix B whose last n — 1 columns (or rows) are vectors of PN Z".

The proof is easily deduced from well-known results on the structure of the sub-
groups of Z" (see, for instance, [14], Chapter VII).

Let o be one of the vertices of the rhomboid & (91) and let I, be the closed sub-
space mentioned in the proof of Lemma 3. The intersection 8I1, N Z" is a subgroup
of Z" whose rank equals dim & (9) — 1. Let us complement this subgroup (if nec-
essary) to a subgroup of rank n — 1 so that the vector o does not belong to it. By
Lemma 18 there exists a matrix B whose last n — 1 rows are vectors of this subgroup,
and the first row—a vector of Z"—has a positive projection onto « in the metric
(, ). After the canonical change of coordinates x — (BT)~!x, y — By we have that:

i) the first coordinate of each vector 1 € 911, N Z" equals zero,

ii) the first coordinate of the vector o is positive,

iii) the vector « is the maximal element of 9 (with respect to the standard order
relation < in Z"), and

1v) if the vector 7 does not lie in I1,, then 0 < 7.

LEMMA 19. If system (0.1) is completely integrable, then all points of M not lying
in I, belong to the segment T joining the points 0 and a.

Assume the contrary. By property iii) the vector « is a vertex of the set 9. Let §
be the vertex of 90t adjoining . By our assumption and the definition of adjoining
vertex, f does not lie either in the half-space Il, or on the segment I'. Since a
and # belong to the same half-space R"\Il,, the inner product {a, f) is positive.
Hence, condition (0.11) holds and according to Theorem 2 the system of Hamilton’s
equations (0.1) is nonintegrable. This contradiction proves the lemma.

Applying Lemma 19 to all vertices of the rhomboid & (9), we obtain Theorem 1.

§4. Generalizations

1. The condition of nondegeneracy of the quadratic form Hy = (Ax, x)/2 in The-
orem 2 may be replaced by the following weaker conditions:

1} Am # 0 for all integer vectors m # 0.

ii) The vectors Aa and Af are linearly independent.

We note that if det4 = 0 conditions i) and ii) can hold simultaneously only for
n>3.

We give a simple example. If

I V2 V4
A= 1 O O ’ a=(1>070)r> B=(l,—l,0)T,
0 0 O

then the matrix A4 is degenerate, but conditions i) and ii) hold.
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2. We note that Theorem 2 is not valid in the case when the Fourier coefficients
of the perturbing function H; depend on x. We give an instructive counterexample:

H = a*x} + abx,x; + b*x} + (sin y; — sin y»).

ax; — bx;
A Hamiltonian system with this Hamiltonian function is integrated by the method
of separation of variables: the analytic functions

Fy=a’x} —ax H + &siny,, Fy = b3x3 — bx;H + gsin y,

constitute a complete set of independent integrals.

In this problem we have a = (1,0)7 and g = (0,1)7, and therefore inequality
(0.11) becomes b/a # —m/2 for every integer m > 0. The “limit” line (o, x) =
2ax; + bx, = 0 does not coincide with the line ax: — bx, = 0 in whose points the
Hamiltonian is not defined (cf. Theorem 3). However, integrability holds for all
values of the ratio b/a (irrational values included).

Let o/, a,... be elements of the set 9 lying between the vertices « and S (with
respect to the lexicographic order < in Z"). Clearly, each vector o/, a”, ... is linearly
independent with a. Modifying the reasonings in §1 one can prove Theorems 2
and 3 also in the case when the coefficients A, A/, Ay, ..., hg are constant (here the
remaining Fourier coefficients may be nonconstant analytic functions of xi,..., x,).

3. If the perturbing function H; is not a trigonometric polynomial, the problem
on the existence of additional integrals of a Hamiltonian system is simplified con-
siderably: the nonintegrability of the perturbed system is established, as a rule, after
finitely many steps of the perturbation theory.

To fix the ideas, let us consider the case of two degrees of freedom. Assume, then,
that Hy + ¢H,, where

2
1 / -
Ho=3 Yo ayxixj, Hy= ) hme'"™),  hy=const,
ij=1 meZ?

If the secular set B, consists of finitely many lines on the plane R? = {x{, x,}, the
nonintegrability of the perturbed Hamiltonian system follows from the generalized
Poincaré theorem [3]. We therefore assume that the number of “resonance” lines
making up the set B, is finite. On the set (R?\B;) x T? it is possible to carry out the
first step of perturbation theory. The integrability of the perturbed system depends
now on the structure of the secular set B,. Let us describe this set. To this end, let
us consider the trigonometric series

Zh,ﬁ(x)e’(k'y), hll(= Z ((T,G)hzha (4.1)

tramk )(x.9)

The coefficients of this series are defined in R2\B,. Using (1.2), it is easy to show
that the set B, consists of the points x € R?\B, satisfying the following conditions:

i) (x,k) =0 for some k € Z2, k # 0.

i1) Ay (x) #0.
In a typical situation the set B, contains infinitely many different lines passing through
the origin. This in turn implies the nonexistence of a formal integral with analytic
coefficients in R% x T? (see §2).

4. As an example of application of the remarks in this section, we prove the fol-
lowing fact.
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PROPOSITION 2. Assume that n = 2 and the secular set B, consists of two lines
altogether. Then Hamilton’s equations have an additional formal integral if and only
if these lines are orthogonal (in the metric ( , )).

ProoOF. Sufficiency. Since B, consists of two lines, then in (4.1) 1 = 419 and
o = udg, where 179,00 € Z2, and A and u are integers. The orthogonality of the
lines constituting the set B; means the orthogonality of the vectors 7y and gj. Let
us show that in this case the Hamiltonian system can be integrated by the method of
separation of variables. In fact, let 1y = (1, 72) and gy = (g,, 72). We set

Yy =(tiy1+1202), Yy = (01y1 + 022).
This homogeneous transformation of the angular coordinates is uniquely extended
to a homogeneous canonical transformation x, y — X, Y. In the new variables we
have
H = J(AnXT + 240X, X2 + AnX3) +e(f (Y1) + g(Y2)),
where 4;; = const, and f and g are analytic 2z-periodic functions. Since (7, gp) = 0,
then 4,, = 0. Consequently, the Hamiltonian system has two integrals that are linear
m ég:
ANXE+ef (Y1), $AnXi +eg(Y).

Necessity. Let us consider first the case when the perturbing function H; is a
trigonometric polynomial. As the edges of the set 9 we may take the vectors a =
+A.70 and B = +u.0y, where A, and u, are positive integers. Assume that (a,a) >0
(the case (a,a) < 0 is considered analogously). If (a, 8) # 0, then with no loss of
generality we may assume that (@, ) > 0 (otherwise we replace f by —f). But then
m{a, a) + 2{a, B) > 0 for all integers m > 0. Therefore, if the Hamiltonian system
has an additional integral, by the theorem we have 2(a, #) = 0. This condition is
clearly equivalent to (7g, g9) = 0.

Now let us consider the remaining case when H, is not a polynomial. We use
the remarks in subsection 3. Since 7y and oy are linearly independent, for a fixed
k = Atg + uoy the numbers A and’' 1 are uniquely determined. By assumption, H; is
not a polynomial and hence there are infinitely many different numbers 4 and u. If
(0. 00) # 0, from (4.1) it follows that B, consists of infinitely many different lines,
and therefore it is a uniqueness set for the class of analytic functions in R? = {xi, x}.
To conclude the proof of the nonexistence of a formal integral it remains to use the
reasoning in §2. The proposition is proved.

5. Proposition 2 may be generalized to systems with n > 2 degrees of freedom
(with certain corrections). Let us assume that all points of the set 9 lie on / < n
lines passing through the origin, and their directional vectors are linearly independent.
Then one may assert that the Hamiltonian system with Hamiltonian function Hy +
eH, has n single-valued analytic integrals that are independent for all sufficiently
small values of ¢ if and only if these / lines are pairwise orthogonal (in the metric
(,)). For /=1 the system is clearly integrable.

As an example let us consider the Hamiltonian system with Hamiltonian

H= S e/ = ) 44 ner = il (42)
s=1

where f is a real analytic 2n-periodic function. This system describes the dynam-
ics of a “nonperiodic” chain of n particles on the line. It turns out that if n > 2
and f # const, then the system with Hamiltonian (4.2) has no complete set of in-
dependent integrals. In fact, in this case / = n — 1 and the corresponding lines are
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determined by the vectors (1,-1,0,...,0)7,...,(0,...,1,-1)7, which are not all
pairwise orthogonal. If we “close” the chain by adding to the Hamiltonian (4.2) the
term €f(y, — ), our assertion is no longer applicable: / = n lines lie in the hyper-
plane orthogonal to the vector (1,..., 1)T. The integrability of the “periodic” chain
depends essentially on the concrete form of the interaction potential f.

6. Let us indicate yet another way to generalize Theorem 2. We are concerned
with the existence of analytic complex-valued integrals as functions of real canonical
variables (x, y) € R" x T". In the expressions (0.2) and (0.3) for the Hamiltonian
function the coefficients g;; and A,, are assumed complex numbers (here it is com-
pletely unnecessary to require that h,, and h_,, be complex conjugate). It is not
difficult to see that Theorem 2 is valid in this more general situation.

We illustrate the idea by the example of generalized Toda chains (see [15]). The
class of Hamiltonian systems we are interested in are systems with interaction of
exponential type with Hamiltonian function

1 n i
H= 52x§+82cke(“"”>, (4.3)
s=1 k=1
where | < n, ¢, = const # 0, and a,,...,q, is a set of linearly independent vectors

in R". The systems with Hamiltonians (4.3) are not included in our considerations
due to the nonperiodicity of the exponent. However, if we make the linear canonical
transformation y — iy, x — x/i, we obtain a Hamiltonian system with Hamiltonian
function

1 .
H=-3 Y xlte) cpeln), (4.4)
Making another linear transformation y — Y by the formulas
Y —(as,y), s<|, Y=y, $>1,

and extending it to a canonical, transformation of all the phase space, we obtain a

Hamiltonian function of the form (0.2) that is 2n-periodic with respectto Y, ..., Y,.
To this system we can already apply Theorem 2.
It is known (see [15] and [16]) that if the vectors ay, ..., a; form a system of simple

roots of a simple Lie algebra, then Hamilton’s equations with Hamiltonian (4.3) are
completely integrable. One can prove that the independent commuting integrals
represented in the new variables are periodic with respect to the Y variables. Little is
known on the integrability of the generalized Toda chain in the general case. We now
find necessary conditions for the existence of a complete set of integrals periodic in
Y. As we shall see, these conditions will actually lead us to systems of simple roots.
Since / < n, then (in the variables x, y) we may choose as the vertices a and £ of the
set M = {a,,...,a,} any pair of vectors a; and a; (j # k). By Theorem 2 a necessary
integrability condition is the following (see (0.11)): the quantities 2(a;, ax)/(a;, a;) =
2{a, B)/{a, o) are nonpositive integers. Thus, the matrix

2(a;, ax)
(a),a;)
is the Cartan matrix of some root system. However, it is unclear whether this condi-
tion is sufficient for the integrability of the generalized Toda chain. [15] and [16] do
not give a complete answer to this question.

O. 1. Bogoyavlenskii noted earlier a necessary condition for the integrability of a
system with Hamiltonian (4.3) in an informal sense [15]. It consists in the finiteness

(4.5)




of the Coxeter group generated by the reflections with respect to the hyperplanes
orthogonal to the vectors q,.

In [9] a criterion was found for algebraic integrability of a system with Hamiltonian
function (4.3), where / = n + 1. Under the assumption that each n vectors of the
collection ay, ..., a,, are linearly independent, a condition for algebraic integrability
is that (4.5) be a Cartan matrix.

7. As we observed in the Introduction, an obstruction to the complete integrability
of the Hamiltonian system (0.1) is the collapse of the invariant tori R” = {y mod
27, x = x%} of the unperturbed system lying on the hyperplanes (ma + 8, x%) = 0.
Let us consider in greater detail the problem on the bifurcations of these resonance
tori for systems with two degrees of freedom.

PROPOSITION 3. Let a and f be vectors of M satisfying the assumptions of Theo-
rem 2, and let x° # 0 be a point in R? lying on one of the lines (ma + B, x% = 0,
m=20,1,2,.... Assume that the components of the integer vector ma + f are rela-
tively prime. Then for small ¢ > 0 the Hamiltonian system with Hamiltonian function
Hy + eH| has two periodic solutions analytic in € such that

(1) their trajectories lie at a fixed positive level of the energy integral,

(2) for € = 0 they coincide with a pair of periodic solutions lying on the invariant
torus T3 = {y mod 2z, x = x0},

(3) their characteristic exponents u can be expanded in a convergent series in
powers of \/e, and

1= uo(Ve)"™ ! +o((Ve)™!),  uo#0,
(4) one of these solutions is elliptic (u% < 0) and the other is hyperbolic (u% > 0).

For small fixed values of ¢ > 0 Proposition 3 guarantees the existence in the general
case of a large (but finite) number of different nondegenerate periodic solutions (for
which 4 # 0). As ¢ — 0, their number increases indefinitely. Using the inverse
change of variables with respect to (0.5) this assertion may be restated for a system
with Hamiltonian Hy + H,: for every large value # > 0 at the level of the energy
integral Hy + H, = h there are many nondegenerate solutions with small period. As
h — oo their number increases without bound. It is known that on the trajectories of
nondegenerate periodic solutions the first integrals are dependent (see [2] and [4]).
From this fact and Proposition 3 one can deduce Theorem 2 (cf. [4]). The proof
of Proposition 3 relies upon the application of a generalized version of Poincaré’s
theorem on the generation of periodic solutions that is proved in [17].

In the multidimensional case one must consider the problem of bifurcation of
families of (n — 1)-dimensional tori with incommensurable frequencies, into which
the typical resonance tori of the unperturbed system can be fibered. It would be
desirable to find a multidimensional analogue of Proposition 3.
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