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The Maupertuis principle and geodesic flows on the sphere
arising from integrable cases in the dynamics of a rigid body
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Introduction
The classical Maupertuis principle, which, incidentally, was exactly 250 years

old in 1994, is presented in practically every book devoted to variational calculus
in mechanics. At the same time, it should be observed that it has been applied
to concrete problems only occassionally. Here we refer, for example, to Novikov's
papers [23] and [24], in which it was demonstrated that the Maupertuis princi-
ple makes it possible to apply topological methods to find periodic solutions of
Hamiltonian systems, in particular, in Kirchhoff's problem. Furthermore, in [24]
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the Maupertuis principle was used in the construction of the theory of many-valued
functionals. This theory arises naturally in the study of the motion of a charged
particle in a scalar potential field on a smooth manifold in the presence of an effec-
tive magnetic field. We also refer to Smolentsev's article [25].

Our paper has a double goal:
1) we describe explicitly (from a modern point of view) the mechanism of the

Maupertuis principle using classical integrable dynamical systems as examples;
2) combining this with the new theory concerned with a topological classification

of integrable systems (see [l]-[3]), we construct new examples of integrable geodesic
flows on the sphere with integrals of degree 3 and 4 and prove that these degrees
cannot be reduced.

§1. The general Maupertuis principle

Let Mn be a compact smooth Riemannian manifold with metric gij(x) and let
T*M be the cotangent bundle over Μ with coordinates a; and p, where ρ is a
covector from T*M. We recall that T*M is a smooth symplectic 2n-manifold with
the standard 2-form ω = dp Λ dx. We consider the natural mechanical system
υ = sgradii on T*M, the Hamiltonian Η being given by

where g%i is the inverse of the metric tensor and V(x) is a smooth potential on the
base space M.

By the well-known Maupertuis principle, for sufficiently large h (greater than
max V(x)) the integral trajectories of the vector field υ coincide with the trajectories
of another vector field ν — sgradii on the fixed (2n — l)-dimensional isoenergy level
Q2n~1 — (H(x,p) = h) (which is a smooth manifold), the Hamiltonian Η being
given by

Clearly, υ gives rise to the geodesic flow of a Riemannian metric gij on T*M, where

gij = (h-V(x))gij(x).

Consequently, we can talk of the 'Maupertuis map', transforming the original
Hamiltonian vector field υ (defined on T*M) into another vector field ν (defined on
the same manifold T*M). We shall study some important properties of this map.

Theorem 1.

a) The Hamiltonian field υ and its image ν under the Maupertuis map have
the same integral trajectories on the fixed energy level Q2n~x — (H = h). It
follows that these two Hamiltonian systems are smoothly orbitally equivalent.
We recall that here h > maxV(a;).

b) // ν has a smooth integral f{x,p) on the given isoenergy (2n — l)-surface Q
{we shall refer to such integrals as partial), then ν has also a smooth integral
f(x,p) (no longer partial, but total) on the whole cotangent bundle T*M
(except, perhaps, on the null section Μ = {(a;,0)}).
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The proof of the theorem follows from the classical proof of the Maupertuis
principle. It is easily verified that

dH = \ dH
h - V(x)

on the level surface Q = {H = h).
Also, this implies immediately the formulae for a time substitution along the

integral trajectories of ν giving the time for v. Namely, if t is the time along the
trajectories οι υ and t is the time along the trajectories of v, then dt = (h — V(x))dt.

Let us make a comment on the simple but useful assertion b) of Theorem 1. The
point is that, by the Maupertuis principle, the integral / is initially defined only
on the isoenergy surface Q. However, it can be extended to the whole cotangent
bundle (except, perhaps, the null section) by the natural formula

f(x,p) - f(x,p/\p\),

where the norm |p| is understood in the sense of the Riemannian metric <?jj.
Here we use the fact that since ν is a geodesic flow, its integral can be extended

by homogeneity from one fixed isoenergy surface to the whole space. Some diffi-
culties may arise on the null section, but this will not be our concern, for we shall
study Hamiltonian systems on regular (2n — l)-dimensional isoenergy manifolds Q
(differing from the η-dimensional null section, which is homeomorphic to M).

Remark. The Maupertuis principle can also be used in the case when the
Hamiltonian Η contains terms linear in the momenta (reflecting, for example, the
presence of a magnetic field). See, for example, [23] and [24].

§2. The Maupertuis principle in the dynamics of a massive rigid body

We shall apply Theorem 1 in the important special case when the symplec-
tic 4-manifold T*M is a smooth submanifold of the six-dimensional linear space
R?{s\,S2,sz,ri,r-2,r-s), which can be identified with the linear space adjoint to the
Lie algebra of the group of motions of the three-dimensional Euclidean space. This
Lie algebra is usually denoted by e(3) and then Re = e(3)*, the 4-manifold Τ*Μ
being defined in R6 by

r\ + r\ + rj = 1,
risi +r2s2 + r3s3 = 0.

Obviously, these two equations define a four-dimensional manifold diffeomorphic
to the cotangent bundle T*S2 over the two-dimensional sphere. In various versions
of rigid body dynamics r, and st acquire a concrete mechanical meaning. For
example, for a rigid body with a fixed point moving in a gravitational force field
(that is, for a massive rigid body) r* are the components of the vertical unit vector
(fixed in the three-dimensional space) from the viewpoint of a coordinate system
attached to the moving rigid body, while s; are the components of the kinetic
moment vector of the rigid body.
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Theorem 2. Let υ = sgradii be a Hamiltonian system on the Euclidean space
-R6(si, S2,S3,ri,r2,r3) with Hamiltonian

H(r,a) = (B(r)s,s)+V(r),

where {,) is the Euclidean scalar product in R3, Β is a symmetric non-singular
positive definite matrix {generally depending on r), andV(x) is a smooth potential.
We assume that υ is an integrable system on the Α-manifold T*S2 (embedded in R6),
the second integral f(r, s) being a smooth function, polynomial of degree η in s, that
is, f(r, s) = 5Z™.! Pi(s), where Pi(s) are polynomials of s with coefficients depending
on r. We consider the Hamiltonian system v, the image of ν under the Maupertuis
map.

Then ν (which defines the geodesic flow of some Riemannian metric on S2) has
the second integral f too (for the construction of which see Theorem 1 above), which
is a homogeneous polynomial in s of the same degree as the original integral f.

Proof. By the Maupertuis principle, the new vector field υ is given by a Hamiltonian
Η of the form

First of all, we can assume without loss of generality that either only even powers
of Si or only odd powers of s, appear in /. Explanation: if even and odd powers of
s were both present in /, then, collecting the even and odd powers spearately, one
could see immmediately that each of these two groups is an integral by itself. Now
we define the new second integral / of ν by

This function is a homogeneous polynomial of degree m i n s . The point is that, by
the above assumption about the degrees of all monomials in / being either odd or
even, (m — i)/2 is always an integer. It follows that no radicals appear in /.

Now we shall prove that / is indeed an integral of v. We observe that / coincides
with / on the level set Q = (H = h). It follows that / is an integral on this
energy level. Furthermore, as is easily verified, the homogeneity of Η and / (in s)
implies that the Poisson bracket {H, f } is also homogeneous (as a polynomial
in s). Since this bracket is equal to zero on the given surface Q (on which / is an
integral), {H, / } is identically equal to zero, that is, / is an integral on the whole
4-manifold T*S2. The theorem has been proved.
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§3. The Maupertuis principle and the explicit form
of the metric generated on the sphere by a quadratic

Hamiltonian on the Lie algebra of the group of motions of R3

We shall state one more interesting problem. Suppose that, according to the
Maupertuis principle, with the original system υ on e(3)* we associate a system ν
on the 2-sphere, that is, on its cotangent bundle T*S2. However, so far we have
described only the meaning of the above correspondence without stating the under-
lying formulae. In other words, the question is how to find explicit formulae con-
necting the natural coordinates (ri,r2,r3, S\, S2, S3) with two constraints (imposed
upon these six Euclidean coordinates)

rl+rl+rj = 1,
risi + r2s2 + r 3 s 3 = 0

on a 4-manifold M 4 with the natural coordinates on the cotangent bundle over the
standard 2-sphere? Thus, one must construct four coordinates (xi,X2,Pi,P2) on
T*S2 from these six coordinates.

We embed the 2-sphere in i?3 with coordinates u\,112,113, the sphere being
defined in the standard way by u\ + u2, + u\ — 1. The other group of coordinates
on the cotangent bundle over R3 will be denoted by ui, ι>2, V3 · These define the
momenta. The cotangent bundle over the sphere is thus defined as a 4-manifold in
the 6-dimensional space R6(ui,U2,U3,vi,V2,vs) specified by the two equations

u\ + u\ + u\ = 1,

lil^l + U2V2 + U3V3 = 0.

We identify vectors and covectors with the aid of the Euclidean scalar product (the
Euclidean metric in R3).

Now we must define explicitly an embedding μ of the cotangent bundle over the
2-sphere in the linear space e(3)*. It is given by the following explicit formulae:

r = u, s = [u,v],

where [, ] denotes the vector product in the Euclidean space. In terms of coordi-
nates, this embedding has the form

Si = U2V3 — U3V2, S2 = U3V1 — U1V3, S3 = U\V2 — 1*2'-Ί·

Lemma 1.

a) Under the above embedding μ of the cotangent bundle T*S2 in e(3)*, the
image ofT*S2 coincides with the ^-dimensional orbit of the coadjoint action
of the group E(3) of motions of R3 on the coalgebra e(3)*:

ri+rj+rl = 1,

n s i + r2s2 + r 3 s 3 = 0.
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b) Under μ, the canonical symplectic structure on the orbits of the coadjoint
representation induces the canonical symplectic structure of the cotangent
bundle T*S2 on the cotangent bundle over the standard 2-sphere (embedded
in the coalgebra).

Proof, a) It is clear that the equation u\ + u2. + u\ = 1 turns into r\ + r\ + r | = 1
under the given embedding. Furthermore, the vector ν orthogonal to the radius
vector u turns into the vector product of u and v. It is clear that this product [u, v]
is also orthogonal to u. Therefore s = [u,v] satisfies the linear equation

risi +r2s2 + r3s3 = 0,

being the 'image of the orthogonality relation'.

b) Now it remains to verify that the standard Poisson bracket

{iii,Vj} = Sij, {ui,Uj} = 0, {vi:vj} = 0

in R6(u,v) turns into the standard Poisson-Lie bracket on the coalgebra R6(r,s):

{si,S2} — S3, {si,S3} = - S 2 , {S2,S3} = S1,

{s i , r 2 }=r 3 , {si,r3} = -r 2 , {s2,r3} = ri,

{ri,s2} = -r3, {n,s3} = r2, {r2, s3} = -n.

This assertion can be verified by direct computation. Therefore we have proved that
T*R3(u,v) —t e(3)*(r,s) is a Poisson map. It transforms R6(u,v) =
T*R3(u,v) into the 5-dimensional surface defined by ris\ + r2S2 + 3̂*3 = 0 in
R6(r,s) — e(3)*. The map is obviously non-linear, the 'normal bundle' over the
sphere being its kernel. The equation r\Si + r2S2 + r3s3 = 0 is a special case of
riSi + r 2 s 2 + r3s3 = g, where g is an area constant. Here we take into account that
the embedding

T*S2 -> TS 2 ->· TR? -> T*R3

is symplectic. We recall that the Euclidean metric is used to identify the tangent
and cotangent bundles.

The lemma has been proved.

Thus, we consider the symplectic embedding (diffeomorphism)

μ: T*S2(x,p)^T*S2(r,s).

Here χ and ρ are the canonical coordinates. To simplify notation we shall write Κ
instead of Η .

Lemma 2. // the Hamiltonian K(r, s) is quadratic in s, that is, it has the form
Κ = (B(r)s,s) (where (,) is the Euclidean scalar product), then it is transformed
by μ into a Hamiltonian K(x,p) quadratic in p. Consequently, the latter has the
form
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where gv' is the inverse tensor to the Riemannian metric gij (x) on S2. In particular,
the Hamiltonian system with Hamiltonian Κ turns into the geodesic flow of g^ on
the 2-sphere.

Proof. The formulae for μ expressing (r,s) in terms of (u,v) are linear in v. The
lemma has been proved.

Now we shall write down explicit formulae expressing the Riemannian metric g^
in terms of Β as well as the converse formulae expressing Β in terms of g^.

Theorem 3. The relationship between Β and g^ is as follows. Let Β be a given
bilinear form. We consider the standard embedding of S2 into R3 and define a
Riemannian metric Βαβ on R3 by the formulae below. Then the desired Riemann-
ian metric g^ on the sphere will be induced by this metric on R3. The formulae for
Β read

Βαβ = Βαβ/Χ,

with λ being the determinant detB(u)\L, where B{U)\L is the restriction of Β to
the two-dimensional Euclidean plane L orthogonal to the radius vector u, L being
equipped with the Euclidean metric, which means that the determinant is computed
in the Cartesian coordinates on L.

It follows that Β is conformally equivalent to B. Note that Β has a 3 x 3-matrix,
while g^ has a 2 χ 2-matrix. It proves convenient to consider the 'bar' as a map
assigning a form to a form. Then the converse of Theorem 3 can be briefly stated
as follows.

Theorem 4. Conversely, Β can be reconstructed from the metric Β in a similar
way, namely,

We proceed to the proof of Theorems 3 and 4.

Consider the Hamiltonian K(u, v) of a geodesic flow of g^ on S2. We recall that
(u,v) belongs to the cotangent bundle over the sphere. By the definition of K,
the value of K(u,v) at (u,v) is the scalar square of υ under the metric g~l at a
point u on the sphere. Here we consider g~l to be a metric on vectors, lowering
the indices with the aid of the Euclidean scalar product. On the other hand, from
the explicit formulae for the embedding of the cotangent bundle over the sphere
into an orbit in the coalgebra we can see that K(u,v) is equal to the scalar square
of [u, v] under B. Consequently, taking into account that the action of the vector
product in a tangent plane to the sphere can be reduced to a rotation of a vector
by π/2, we obtain the following assertion.

Lemma 3. Let g be a given form. Then the restriction of Β to a tangent plane to
the standard 2-sphere can be constructed as follows. To find the scalar product of
tangent vectors a and b under B, we must turn each of the vectors through 90° and
then take their scalar product under g^1.

On the basis of this lemma, we can now equate the matrices of Β and g on a
tangent plane to the 2-sphere. It is known that there is always an orthonormal



480 Α. V. Bolsinov, V. V. Kozlov, and A. T. Fomenko

basis on the tangent plane in which g can be expressed by a diagonal matrix

(c 0
°={0 d

In this basis we find the matrix of B:

B=(l/d 0

which can obviously be rewritten as

B = l(° <Λ_ g
cd \ 0 d

Theorem 4 has been proved.
It should be observed that the appearance of aetg can, in fact, be explained by

the need to identify vectors with covectors (and vice versa).
From the resulting formula one can see that the 'bar' is an involution in the

tangent space to the standard unit sphere. (It is not an involution at other points.)
This implies Theorem 3.

The appearance of an involution reveals an interesting duality. The 'bar' makes
it possible to transform a metric on the sphere (embedded in R3 in the standard
way, but inheriting some metric g of general form from R3) into another metric.
The algorithm of this transformation is, in fact, described in Lemma 3.

Remark. Conversely, on the standard sphere embedded in R3 we consider the metric
induced by a diagonal metric on the ambient space R3. Let this ambient metric
have the form

ds2 = h (u) du\ + I2 (u) du\ + I3 (u) du\.

Then, with the aid of μ"1 one can obtain the following Hamiltonian:

In the sense of the duality discovered above, the metric of the ellipsoid is dual
to that on the Poisson sphere.

Let us state an interesting problem: to generalize the above construction to the
case of the cotangent bundle over a sphere of arbitrary dimension.

§4. Classical cases of integrability in rigid body dynamics
and the corresponding geodesic flows on the sphere

The following classical cases of integrability are well known in the theory of a
rigid body: the Euler, Lagrange, Kovalevskaya, Goryachev-Chaplygin, and Clebsch
cases. All these cases are united by the property that their Hamiltonian is a qua-
dratic form in the momenta plus a potential (that is, no terms linear in the momenta
are present). Applying the Maupertuis map, we obtain a variety of corresponding
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integrable geodesic flows. An interesting question is what flows (and metrics) can
be obtained in this way.

We consider the Hamiltonian of the problem of motion of a rigid body. In the
general case it has the form

Η = hs\ + I2s\ + hsj + L{r,s) + V(r),

where I\,I2,Iz are constants, L is linear in the momenta, and V is a smooth
potential.

Now we shall consider an interesting case when the Hamiltonian Η (or the met-
ric g) contains no linear (in the momenta) terms, but includes a potential V(r).
What is the corresponding metric on the sphere of radius 1 embedded in the stan-
dard way in the Euclidean space R3 (u^, u2, u3)?

With the aid of μ, one can construct from it the geodesic flow of the Riemannian
metric

\-\ h du\ + I2 du\ + h du\ds1 = (h- V{u)){hhh ) t 2 . _ ! \
x u{ + I2 «2 + I3

4.1. The Euler case and the metric on the Poisson sphere. In the Euler
case the Hamiltonian has the form

Η = hs\ + I2sl + I3s\.

The following metric on the 2-sphere (the so-called metric on the Poisson sphere)
corresponds to it under the Maupertuis map μ:

Λς2 _ h ( T T rs-i h du\ + h du\ + h du\
ds - ti{lil2h) • ! „ ! , 1 3 ,

Ix u{ + I2 u2 + I3 «3
where h is a fixed energy level (that is, Η — h) in the Euler case. Here it is
assumed that the above metric should be restricted to the sphere S2 embedded in
the standard way in R3(ui, u2, U3). We recall that the same metric on the Poisson
sphere can be defined differently. One must consider the rotation group 50(3)
equipped with the left-invariant Riemannian metric defined by the diagonal matrix
diag(/i, 12,13). This matrix gives a scalar product in the Lie algebra of this group.
Distributing this scalar product over the whole sphere by left shifts, we obtain a
left-invariant metric. One must therefore consider the left action of the circle S1 on
5O(3) and go over to the quotient space of the group under this action, obtaining
the 2-sphere as a result. The initial left-invariant metric on the group induces a
metric on the base space, that is, on the sphere, which turns out to be the metric
on the Poisson sphere.

An interesting question is whether or not the Poisson sphere can be realized as
a smooth sphere embedded (or immersed) in R3?

If the curvature of the metric on the Poisson sphere is positive, then, by the
classical Weyl theorem [17], the sphere can be realized as a convex surface in the
three-dimensional Euclidean space. It turns out that the curvature is not always
positive and, by all appearances, it is generally impossible to embed the Poisson
sphere in R3. For I\ = I2 this problem was considered by Okuneva in [22], where
it was proved that when (I\ — Iz)/l3 < —\ (in which case there are domains of
negative curvature on S2), the Poisson sphere cannot be realized as a surface of
revolution in R3. Apparently, in this case no isometric embedding exists, in general.
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4.2. The Lagrange case and the corresponding 'metric of revolution' on
the sphere. In the Lagrange case the Hamiltonian has the form

Here the ellipsoid of inertia is a surface of revolution, since I\ — li. The corre-
sponding metric on the sphere has the form

In other words, the geodesic flow arising from the Lagrange case is a geodesic flow on
some sphere of revolution. An interesting problem is to give a geometric description
of such spheres of revolution.

4.3. The Clebsch case and the geodesic flow on an ellipsoid. Let us mention
an extremely interesting consequence of the Maupertuis principle. Namely, we shall
prove that smooth orbital equivalence holds between the Clebsch integrable case
and the geodesic flow on an ellipsoid. (We recall that this latter problem is also
integrable, which is well known.) This result was obtained by Minkowski and Kozlov
by different methods and at different times.

Proposition 1. Consider an integrable Hamiltonian system ν on e(3) = R6(s,r)
describing the motion of a three-dimensional rigid body in an ideal fluid in the
classical Clebsch case. In this case the Hamiltonian Η has the form

The second integral f of this system has the form

f = s\ + si + si + {hhr\ + hhrl +

Then υ restricted to the three-dimensional energy level Η = 0 is smoothly orbitally
equivalent to the geodesic flow ΰ of the standard Riemannian metric on the ellipsoid
in the three-dimensional Euclidean space defined by

hx2 + hy2 + hz2 = 1

in the Cartesian coordinates x, y, z.

Proof. We consider the three-dimensional level set Q = {H = 0) (that is, h = 0)
and apply the general scheme of the Maupertuis map presented above. Then the
trajectories of ν coincide with those of the system ν with Hamiltonian Η of the
form

f f
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The Hamiltonian Η gives rise to a Riemannian metric on the 2-sphere. It is
easily verified that this metric coincides with the metric of the ellipsoid defined by
the equation in the theorem. The proposition has been proved.

Here the second integral of ν has the form

Remark. Consider another energy level Η = h, where h is now different from
zero. Following the same scheme, with the aid of the Maupertuis map we obtain
a new Hamiltonian system ΰ, the geodesic flow of a Riemannian metric on the
two-dimensional sphere. This system has the following Hamiltonian:

=(f+1
Again, this system is obviously integrable. Its second integral has the form

Τ 9 9 2 Ιτ τ 9 τ τ Ι τ τ 2\ S l I'h + s\j72 + S%l'h

f = si+4 + 4 + (/aj,r? + hhrl + hhrl) ^ ^ ^

Therefore we can see that the metric of the ellipsoid belongs to a one-parameter
family of Riemannian metrics (being no longer ellipsoid metrics), whose geodesic
flows are nevertheless integrable. It would be extremely interesting to find out
what Riemannian metrics can thereby be obtained on the two-dimensional sphere.
Since they are integrable with the aid of an integral quadratic in the momenta,
it follows by the classical theorem that they are Birkhoff metrics, that is, they
can be written in the well-known form (discovered by Birkhoff and then studied by
KolokoFtsov) for a suitable choice of conformal coordinates on the sphere. However,
it is quite difficult to find 'suitable conformal coordinates' (the algorithm for finding
such coordinates being unclear itself). Therefore, the problem of desciribing the
geometric properties of such metrics remains topical.

4.4. The Goryachev—Chaplygin case and the corresponding integrable
geodesic flow on the sphere. The cubic integral cannot be reduced to a
quadratic or linear one. Here we present in detail the results by Bolsinov and
Fomenko briefly published in [16].

We apply the same formula for the Goryachev-Chaplygin integrable case. The
Goryachev-Chaplygin Hamiltonian has the form

Η = s\ + s2

2 +4sj +n.

The Goryachev-Chaplygin integral is given by

f = s3(S

2

1+s2

2)-(r3s1)/2.
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By the Maupertuis principle, we construct from Η the following new Hamiltonian
Η on the cotangent bundle over the sphere:

«? 4- .ς?

Η = Λ - η '

where h is a constant greater than 1. Then the integral / turns into an integral /
of the form

The Riemannian metric of the corresponding geodesic flow on the sphere reads

2 _ Λ - M! du\ + du\

~ 4 l + l +

To write down the integral of the corresponding geodesic flow, it suffices to replace
r and s in the formula for / by their expressions in terms of u and υ given in [15].
We shall not do this in view of the complexity of the resulting expressions.

Theorem 5 (Bolsinov and Fomenko [16]). The Goryachev-Chaplygin integrable
case generates a Riemannian metric on the sphere having a Bott geodesic flow
integrable with the aid of the above-mentioned integral of degree 3. This integral
cannot be reduced to a quadratic one.

Proof. We consider the rough molecule W of the given geodesic flow of the
Goryachev-Chaplygin metric on the sphere. As is known, this flow is continu-
ously orbitally equivalent to the original dynamical system of rigid body dynamics
(the Goryachev-Chaplygin case). The rough molecule W of the latter integrable
system has already been computed by Oshemkov in [12]. It has the form pre-
sented in Fig. 1. To continue our proof we assume the contrary, that is, that the
Goryachev-Chaplygin integral on the sphere can be reduced to a quadratic one.
But in this case we could use Nguyen and Polyakova's paper [5], in which they gave
a complete computation of the molecules W* of all geodesic flows on the sphere
integrable with the aid of quadratic and linear integrals. All these molecules are
listed explicitly.

β

A

Figure 1
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Using this result, we can see that the molecule of the Goryachev-Chaplygin flow
on the sphere would have to have one of the two forms presented in Fig. 2. The
molecule in Fig. 2a would correspond to the case when the Goryachev-Chaplygin
integral could be reduced to a quadratic one, while that in Fig. 2b would correspond
to the case when it could be redued to a linear one. Here W\ is a tree, all of whose
branches are directed upwards, while all the branches of W2 are directed downwards.
Furthermore, the atoms forming the vertices of W\ and W2 must have a special form.
In particular, they must not contain any 'stars' (see [5]). Comparing these graphs
with that in Fig. 1, we can see that the latter has no such structure. Since W is a
rough topological invariant of an integrable system, we obtain a contradiction. The
proof is completed.

Figure 2

4.5. The Kovalevskaya case and the corresponding integrable geodesic
flow on the sphere. The integral of degree four cannot be reduced to a
quadratic one. Here we present in detail Bolsinov and Fomenko's results briefly
published in [16].

The Kovalevskaya Hamiltonian has the form

The Kovalevskaya integral is given by

By the Maupertuis principle, we can construct from Η the following new
Hamiltonian Η on the cotangent bundle over the sphere:

TT + s\+ 2s\
h — T\
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where h is a constant greater than 1. Then / turns into an integral /of the form

2 h — ri

The Riemannian metric of the corresponding geodesic flow on the sphere has the
form

2 h — ui du\ + d«2 + 2(ίι*3

~ 2 ul+ul + ul/2
To write down the integral of the corresponding geodesic flow, it suffices to replace
r and s in the formula for / by their expressions in terms of u and ν given in [15].
We shall not do this because of the complexity of the resulting expressions.

Theorem 6 (Bolsinov and Fomenko [16]). The Kovalevskaya integrable case gen-
erates a Riemannian metric on the sphere having a Bott geodesic flow integrable
with the aid of the above-mentioned integral of degree 4. This integral cannot be
reduced to a quadratic one.

Proof. Consider the molecule W of the given geodesic flow of the Kovalevskaya
metric on the sphere. As is known, this flow is continuously orbitally equivalent
to the original dynamical system of rigid body dynamics (the Kovalevskaya case).
The molecule W of the latter integrable system was computed before by Oshemkov
in [12] (see also [11]). It has the form presented in Fig. 3. To continue the proof
we assume the contrary, that is, that Kovalevskaya's integral on the sphere can
be reduced to a quadratic one. In this case we can use Nguyen and Polyakova's
article [5] again, in which the authors present a complete computation of the
molecules W* of all geodesic flows on the sphere integrable with the aid of quadratic
and linear integrals. All these molecules are listed explicitly.

A ' A *

\

\

Figure 3

Using this result, we can see that the molecule of the Kovalevskaya flow on the
sphere would have to have one of the two forms in Fig. 2. The molecule in Fig. 2a
would correspond to the case when the Kovalevskaya integral could be reduced to
a quadratic one, while that in Fig. 2b to the case when it could be reduced to a
linear one. As can be seen in Fig. 3, in the Kovalevskaya case the molecule W
contains two atoms A*, neither of which appears in any of the molecules computed
by Nguyen and Polyakova. This contradiction proves the theorem.
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§5. Integrable metrics on the torus and on the sphere

We observe that the Goryachev-Chaplygin and Kovalevskaya integrable cases
generate, in fact, a whole (at least one-parameter) family of Riemannian metrics
on the sphere. As can be seen from the formulae, the coefficients of the metric
contain a parameter h, which can be varied arbitrarily. We thus obtain two one-
parameter families of integrable geodesic flows of metrics with integral of degree 3
and 4, respectively, which cannot be reduced to quadratic ones.

It follows that there are metrics on the sphere whose geodesic flows are integrable
with the aid of integrals of degree 1, 2, 3, 4. We refer to such metrics as integrable
1-metrics, 2-metrics, 3-metrics, and Α-metrics (and the set of these metrics we call
1 -2-3-4- metrics).

Integrable 1-metrics and 2-metrics have been described completely. To begin
with, we consider the local aspect of this problem. Let X\,X2 be local conformal
(isothermal) coordinates of a Riemannian metric, and let pi and p-2 be the associated
canonical momenta. In terms of these variables the Hamiltonian of the geodesic
flow takes the form

Theorem 7 (Birkhoff [9]). // there is an integral f linear in the momenta, then
f = Pi and Λ is independent of χχ in some conformal coordinates. But if an integral
quadratic in the momenta and independent of Η exsits, then Λ = X(x\) + μ{χ2) *n

some coordinates.

The coordinate x\, of which Η is independent, is called cyclic and the corre-
sponding momentum p\ is called a cyclic integral. Thus, the presence of linear
integrals is connected with the existence of 'hidden' cyclic variables.

The Hamiltonian of a geodesic flow with a quadratic integral can be reduced to

the form

H=
2(λ(χλ)+μ(χ2))-

Systems of this form are called Liouville systems. The variables x\,p\ and Χ-Σ-,ΡΊ
can be separated: the equations admit two quadratic integrals

Thus, the presence of an additional quadratic integral implies the existence of
'hidden' separated variables.

In fact, Birkhoff considered a more general problem concerning conditional poly-
nomial integrals of degree one and two in the momenta (these are integrals on a
single level set of the energy integral). Birkhoff's theorem is also valid in this case,
except that a suitable time substitution must be made in addition.

Now we consider the global problem of constructing 1-metrics and 2-metrics.
First of all, we observe that a closed surface Μ of genus > 1 admits no 1- or
2-metrics at all. This is a consequence of a more general result on the absence
of non-trivial integrals of a geodesic flow that are analytic in the momenta and,
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in particular, integrals polynomial in the momenta [18]. Therefore, it remains to
consider the cases when Μ is homeomorphic to the torus T2 or sphere S 2 . As is
well known, on the torus one can always introduce global conformal coordinates.
This means that the Hamiltonian of the geodesic flow on the torus can be assumed

to have the form Η = ——̂  2—, where Λ is a positive 27r-periodic function of x\
2A(a;i,x2)

and x-2-

T h e o r e m 8 (Birkhoff, Kolokol'tsov, Babenko, Nekhoroshev). If there is an integral
linear in the momenta, then

Λ = \(mxi + TIX2)

in some angular conformal coordinates, λ(·) being α 2π-periodic function and m, η
being integers. But if an additional quadratic integral exists, then

Λ = \(πιχγ + nx2) + μ{—ηχγ + νηχ-ΐ)

in some conformal coordinates, λ(·) and μ(-) being 2π-periodic functions and m, η
integers.

We point out that a linear integral is now always generated by an angular cyclic
coordinate. Here is a simple example: Λ Ξ 1 and f = pi + V%P2- In fact, this
theorem appears in [10], although it contains an error discovered by Babenko and
Nekhoroshev. It asserts that with the aid of a suitable unimodular linear transfor-
mation one can set m = 1 and η = 0 in the expressions for Λ. It turns out that
either conformality or unimodularity must then be violated. A more general the-
orem on conditionally linear and conditionally quadratic (in the sense of Birkhoff)
integrals of a geodesic flow on the torus was obtained in [19].

The description of integrable 1-metrics and 2-metrics on the two-dimensional
sphere represents a more complex problem.

Theorem 9 (Kolokol'tsov [10]). // α geodesic flow on the sphere has a linear inte-
gral, then Λ has the form Λ = \{x\ + x\) in some conformal coordinates x\,X2
on the sphere with one point pricked out, λ(-) being a smooth function such that

// an additional quadratic integral exists, then in some conformal cordinates A
has the form

\{u(xi,x2)) + μ{ν(χι,χ2))
A= z = x+ix

\4z2 + g2z + g3

where g\ — 21g\ φ 0, u and υ being the real and imaginary parts of the transformation
w = 7~1(ζ), where y(z\g2,g3) is the Weierstrass function with a pair of periods of
the form ωχ, ίιοι with real ω\,ω2, and where λ and μ are smooth functions such that

a) X(u) = (u- fcwi/2)2(c + o(l)) as u -» fcc^/2,

μ(ν) = (ν - fcw2/2)2(c + o(l)) as ν ->• Α;ω2/2,

for any integer k and any c > 0,
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b) the values of λ and μ on the intervals [α>ι/2,ωι] and [u>2/2,u>2] are deter-
mined by their values on [Ο,ωχ/2] and [0,(^2/2] according to the formulae

τ) = λ(ωι/2-τ), τ 6 [0,ωχ/2],

τ)=μ(ω2/2-τ), τΕ[0,ω2/2],

c) λ and μ are periodic with periods ω ι and ω2 respectively. (Then X(u(z)) +
μ(υ(ζ)) is independent of the choice of the value of the many-valued function

As opposed to these metrics, integrable 3-metrics and 4-metrics have not been
described completely. So far we have presented only some separate initial examples
of such metrics, although we are convinced that these one-parameter metrics can,
in fact, be included in some natural many-parameter (or even functional) families
of metrics integrable with the aid of integrals of degree 3 or 4.

We say that a metric is non-singularly integrable if its geodesic flow can be
integrated with the aid of some Bott integral (on a non-degenerate isoenergy level).

§6. Conjectures

(a) On the torus there are no other non-singularly integrable metrics, except
for the well-known integrable 1-2-metrics.

(b) On the sphere any non-singularly integrable metric coincides with one of
the integrable 1-2-3-4-metrics.

(c) A counter conjecture for the case of the sphere.

Conjectures (a) and (b) were stated by Kozlov and Fomenko. In their formulation
the non-singularity condition for the metric can possibly be relaxed to be replaced
just by smoothness.

Problem. 7s it true that any non-singularly integrable (smooth) Riemannian met-
ric on the torus must be an integrable 1-2-metric (all such metrics are known) and
on the sphere it must coincide with some metric of type 1-2-3-4 (at this moment
only ϊ—2-metrics have been completely described), that is, must have an integral of
degree 1, 2, 3, or 4?

In other words, it is claimed that if the geodesic flow of some smooth metric
on the torus (respectively, on the sphere) is integrable with the aid of a smooth
non-singular integral (or one polynomial in the momenta), then the flow must have
an integral of degree 1 or 2 in the case of the torus and not exceeding 4 in the case
of the sphere.

One of the authors of the present article, namely A. V. Bolsinov, has expressed
his own opposite opinion (in the case of the sphere), which is the following:

In the case of the sphere there are no topological obstacles to the existence of
geodesic flows integrable with the aid of an integral of arbitrary degree.

Therefore Bolsinov states a counter conjecture: on the sphere there are inte-
grable geodesic flows of metrics whose integrals have arbitrarily high degree (in the
momenta) and cannot be reduced to an integral of degree 1, 2, 3, or A.

This assertion is supported by the following local result.
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Theorem 10 (Kozlov). There are systems with Hamiltonian
Ο ο

7Ί -4— ΤΪ
TT _ Pi ' -P2

2A(xi,x2)

that admit in the domain Dx χ R^ (D being a disc on the X\, x2 plane) a polynomial
integral of any given degree η in the momenta and independent of H, and do not
admit any polynomial integral of degree < η independent of H.

For the time being, we can satisfactorily substantiate neither the first nor the
second conjecture. We shall therefore proceed to the case of the torus (for which
there is no difference of opinion between the authors).

Theorem 11 (Kozlov and Denisova [20]). We assume that A is a trigonometric
polynomial and that the geodesic flow on the torus has a polynomial integral inde-
pendent of H. Then there is an additional polynomial integral of degree ^ 2 in the
momenta.

According to the Weierstrass approximation theorem, any metric on the torus
can be approximated as closely as required by such metrics. The above conjecture
is therefore proved for an everywhere dense set of Riemannian metrics on the torus.

In the general case when Λ is an arbitrary smooth function on the torus, a weaker
result can be obtained in this direction.

Theorem 12 (Kozlov and Denisova [21]). We assume that the geodesic flow on
the torus has an additional polynomial integral f of degree η such that

a) if η is even, then f is an even function of p\ and p2,
b) if η is odd, then f is an even function of pi (or p2) and an odd function of

Pi (orpi).

Then there is a polynomial integral of degree ^ 2 independent of H.

The problem of existence of natural integrable mechanical systems on T 2 with
integrals of higher degree in the momenta was partially studied by Byalyi in [13],
and Kozlov and Treshchev in [14]. For example, in [13] Byalyi considered the
Hamiltonian system ν = sgrad Η with Hamiltonian

where V is a 27r-periodic function of χ and y. The system υ = sgrad Η determines
the motion of a material point on the two-dimensional torus in a potential field.
A general problem is to find a potential V such that there exists an integral Fn

polynomial of degree η in the momenta with 27r-periodic coefficients. Since the odd
and even parts of Fn taken separately are then first integrals, Fn can be assumed
to be the sum of homogeneous polynomials of odd or even degrees only. The cases
of linear and quadratic integrals are among the classical ones (see Birkhoff [9],
Kolokol'tsov [10], and Byalyi [13]). It is known that

(1) an integral i \ linear in the momenta exists if and only if V = f(mx + ny),
where m,n are integers and / is a 27r-periodic function; then i\ = mp2 — np\\

(2) an integral F2 quadratic in the momenta exists if and only if V —
fi(miX+niy) + f2(m2x+Ti2y), where mi and ni are integers and m,\m2jn\n2 = —1,
and where /* are 27r-periodic; then F2 = (xi + x2)p\ + ^Pip2 — (xi + X2)p\ +
2(xi - x-2)(fi + h) and xt = mj/nj.

For higher degrees, let us mention the following results due to Byalyi.
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Proposition 2 (Byalyi [13]). An integral F3 cubic in the momenta exists for a
Hamiltonian Η on T2 if and only if case (1) is realized, that is, there exists an
integral Fi linear in the momenta and, this being the case, F3 can be explicitly
expressed in terms of F\ and H.

Proposition 3 (Byalyi [13]). An integral F4 of degree four in the momenta exists
for a Hamiltonian Η on T2 if and only if case (2) is realized, that is, there exists an
integral F2 quadratic in the momenta and, this being the case, F4 can be explicitly
expressed in terms of F2 and H.

The proof of either of these theorems rests on a detailed study of the equation
{Fn,H} = 0. For η > 4 the computations become quite cumbersome, even though
they probably lead to the same results.

Kozlov and Treshchev [14] considered this problem from another viewpoint: the
potential V{x\,..., xn) of the natural system with Hamiltonian

is assumed to be a trigonometric polynomial of χχ,... ,xn on T", but there are
no restrictions on the degree of additional integrals. The basic theorem giving
a necessary and sufficient condition to be satisfied by V(x\,... ,xn) in order to
ensure complete integrability (in the sense of Birkhoff) of a Hamiltonian system
with positive definite quadratic form \ ]C"j=i aijPiPj n a s t n e following important
consequence. If a Hamiltonian system with Hamiltonian

1 ^
Η = - 22 aijPiPj + V(X1> · · • > χη)

has η independent polynomial integrals with independent leading homogeneous
forms, then there are η independent involutory polynomial integrals of degree not
exceeding 2.

Thus, the results of [13], [14], [20], and [21] provide some convincing evidence
that no natural integrable mechanical systems with non-trivial integrals of higher
degree in the momenta should be expected to exist on T2. Nevertheless, the problem
remains open for the time being.

§7. The complexity of integrable geodesic flows
of 1—2-metrics on the sphere and on the torus

Selivanova [4] and Nguyen and Polyakova [5] obtained a topological classifica-
tion of integrable geodesic flows on T2 and S 2 having additional integrals / linear
or quadratic in the momenta. Later on, this enabled Selivanova, Polyakova, and
Nguyen to classify the complexity of these integrable geodesic flows on the sphere
and on the torus (see [4], [5], and below).

Theorem 13 (Nguyen and Polyakova). Integrable geodesic flows (Riemannian
metrics) on the sphere having additional integrals linear or quadratic in the
momenta fill the domain A U Β in the molecular complexity table (Fig. 4). Here
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{ 777.
(m,n) = (6,4) or— + 3 ^ η < m - 2, m ^ 6,

where m = 4k + 2, η = 21 and k, I are arbitrary non-negative integers >.

This set A, which in the table represents integrable geodesic flows with a quadratic
additional integral, is designated by black discs in Fig. 4.

b)

{ τη
(m,n) = (2,1) or — + 2 ^ η < m - 1, m ^ 6,

where m = 4k + 2, η = 21 + 1 and k, I are arbitrary non-negative integers \.

This set B, which in the table represents integrable geodesic flows with a linear
additional integral, is designated by white discs in Fig. 4.

Theorem 14 (Selivanova). Integrable geodesic flows on the torus fill the domain
C in the molecular complexity table (Fig. 5). Here

{ τη
(m,n) = (0,1) or — + 2 ^ η ζ τη, τη = 4k, η = 2(1 + 1),

where k,l are arbitrary non-negative integers >.

In Fig. 5 the points of this set are shown as black discs.

In the case of geodesic flows on the torus the isoenergy 3-surface Q3 — {H =
const} is diffeomorphic to the torus T 3 . In the case of the sphere it is diffeomorphic
to the projective space, that is, Q3 = RP3. All 'mathematically existing' integrable
Hamiltonian systems (of general type; see above) on the isoenergy 3-sphere have



The Maupertuis principle and geodesic flows on the sphere 493

16
14
12
10

8 ·
6
4

•η

case of the torus

/

& • • : • : • • • • · • • · • · •

η = τη,Χ- '••'.'•

y i : T3-domain
< i f ••.':.•'.•'• • · ; • ; • • . ' • • :

• . ' . # • : • . ' • · . • . • - • . • •

:VP\V.".:. _^"

m

4 8 12 16 20

Figure 5

been classified by Nguyen and Fomenko [6]. The complexities of all 'mathematically
existing' integrable systems on T 3 and on the projective space RP3 were described
by Nguyen [7], who computed the shape of the domain in the complexity table filled
with the complexities of such integrable systems. These domains have been called
the S3-domain, the T3-domain, and the i?P3-domain, respectively [1], [6], [7].

As we can see in Figs. 4 and 5, the zones representing the complexities of inte-
grable geodesic flows of 1-2-metrics on the sphere (and, respectively, on the torus)
form a 'net' (a 'net subset') inside the i?P3-domain (respectively, the T3-domain).

§8. A rougher conjecture: the complexities of non-singularly
integrable metrics on the sphere or on the torus

coincide with those of the known integrable 1—2-metrics

This conjecture has been stated by Fomenko. It is based on some 'experimental'
facts.

Conjecture on the complexity of integrable metrics. Let gij be an arbitrary
non-singularly integrable Riemannian metric on the torus (or sphere) (that is, the
corresponding geodesic flow is integrable in the sense of Liouville). Then in the case
of the torus the complexity of this metric (its geodesic flow) is the same as that of
some integrable 1-2-metric (all such complexities have already been computed), and
in the case of the sphere it is equal to that of some integrable 1-2-3-4-metnc (the
complexities of which have been described only partially so far).

As we have proved above, on the sphere there are integrable metrics with an
additional integral of degree 3 or 4 irreducible to a quadratic one, for example, the
Goryachev-Chaplygin metric and the Kovalevskaya metric. It is easily seen that
the complexity of the Goryachev-Chaplygin metric is equal to (6, 5), that is, it
lies in the domain filled with the complexities of 1-2-metrics. At the same time,
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the complexity (8, 6) of the Kovalevskaya metric clearly does not belong to this zone
(Fig. 4). We also observe that Kovalevskaya's molecule contains two atoms of the
form A* (while the geodesic flows of 1-2-metrics have no such atoms).

If the general conjecture stated above is true, then the point representing any
non-singularly integrable metric on the torus must lie in the remarkable domain in
the complexity table discovered by Selivanova. This domain is designated by black
discs in Fig. 5. The form of the analogous domain for the sphere remains unclear
for the time being: so far only the complexities of 1-2-metrics have been described,
but it is entirely unclear what the complexities of 3-4-metrics look like.

An integrable Riemannian metric on a two-dimensional manifold M2 is called
orientable if all saddle critical circles of the corresponding geodesic flow
( = Hamiltonian system) have orientable separatrix diagrams.

It turns out that in the class of orientable integrable metrics on the sphere
Fomenko's conjecture on their complexity is 'almost true'. Namely, the following
assertion holds.

Proposition 4 (Nguyen, Polyakova, and Kalashnikov (jr)). The number m of crit-
ical circles of an arbitrary orientable non-singularly integrable Riemannian metric
on the sphere has the form m = 4k + 2 for some integer k.

Corollary 1 (Nguyen and Polyakova). Orientable non-singularly integrable geo-
desic flows on the sphere lie inside the following 'net subset' in the RP3-domain
represented in Fig. 4 by white and black discs as well as white discs containing a
dot. Here the geodesic flows with linear and quadratic integrals are represented by
white and black discs, respectively. White discs containing a dot stand for presently
unknoum {and maybe not existing at all) integrable Riemannian metrics.

Therefore, as we can see, the 'complexity zone of all integrable orientable metrics'
practically coincides with the 'zone of linearly or quadratically integrable metrics',
except for the straight line along the lower boundary of the angle in Fig. 4. An
extremely interesting problem is to complete the study of this 'special straight line'
on the boundary (and thus to provide a final answer to the question stated above).

The assertion that m = 4fc (analogous to the theorem above) holds for an arbi-
trary non-singularly integrable geodesic flow of a Riemannian metric on the torus.
Here η is an even number (see above). Therefore, the Ί-2-integrability zone' (pre-
sented in the table of complexities of the classical Liouville integrable 1-2-metrics
on the torus) covers at least 'a half of the domain corresponding to all 'mathemat-
ically feasible' integrable geodesic flows (of non-singular orientable metrics) on the
torus. In Fig. 5 black discs represent the Liouville geodesic flows on the torus and
white discs with a dot stand for the presently unknown (and maybe not existing at
all) integrable geodesic flows on the torus.

§9. The geodesic flow on an ellipsoid is topologically orbitally
equivalent to the Euler integral case in the dynamics of a rigid body

Apart from the Maupertuis principle, there are other methods of establishing an
isomorphism between various dynamical systems.
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In this section we mention one such method developed recently by Bolsinov
and Fomenko. For some other methods and examples of isomorphisms see, for
example, [30]-[32].

As is well known, the geodesic flow of the metric induced on an ellipsoid in the
Euclidean space R3 is a completely integrable Hamiltonian system [26] (Jacobi).

We also consider another known integrable system, namely, the so-called Euler
case in the dynamics of a rigid body in R3. We prove that these two dynamical
systems are topologically orbitally equivalent.

Definition. Two smooth dynamical systems are said to be topologically
(smoothly) orbitally equivalent if there is a homeomorphism (diffeomorphism) from
one manifold to the other that transforms the trajectories of the first system into
those of the other system and preserves their orientation. (It is not required that
the time along the trajectories should be preserved.)

The problem of orbital equivalence of dynamical systems has been discussed in
many papers.

Since the three-dimensional level surfaces of an integrable Hamiltonian with two
degrees of freedom are invariant under the flow, it suffices to study the orbital clas-
sification of integrable systems (with two degrees of freedom) on three-dimensional
energy levels. In what follows, when talking of a three-axial ellipsoid we shall always
assume that it is not a surface of revolution. Similarly, in the case of a rigid body
we shall assume that its moments of inertia are distinct.

Theorem 15 (Bolsinov and Fomenko [15]). The Euler integrable case with zero
constant area is topologically orbitally equivalent to the integrable geodesic flow on
a three-axial ellipsoid (the Jacobi problem).

More explicitly, this means the following.
a) The dynamical system describing the Euler integrable case with zero con-

stant area (on a three-dimensional energy level and generally on the whole four-
dimensional symplectic manifold Μ4, the cotangent bundle over the 2-sphere with
zero section removed) is topologically orbitally equivalent to the geodesic flow on
an ellipsoid in the three-dimensional space (the Jacobi problem) (respectively, on
a three-dimensional energy level and generally on the whole cotangent bundle over
the 2-sphere with the zero section removed).

b) This means that for every rigid body in the Euler case with a fixed ellipsoid
of inertia there is a unique (to within similarity) ellipsoid in the three-dimensional
Euclidean space whose geodesic flow is topologically orbitally equivalent to the
given system of Euler equations, that is, the dynamical system describing the free
rotation of a rigid body about its centre of mass.

c) Conversely, for the geodesic flow of an arbitrary ellipsoid in R3 there is a rigid
body revolving freely about its centre of mass, whose ellipsoid of inertia is uniquely
defined (to within similarity), such that the dynamical system of Euler equations
describing its motion is topologically orbitally equivalent to the original geodesic
flow of the metric on the ellipsoid in R3.

d) The explicit formulae connecting the squared half-axes a, b, c of the Jacobi
ellipsoid and the principal moments of inertia I/A, 1/B, 1/C of the rigid body in
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the Euler case orbitally equivalent to it can be obtained from the equalities

~ f+oo 1 =

/0

+o° Φ(ι*, c) du y/(C -A)(C-B)

f~*<f>(u,a)du i _ A

•-A)(B-A)-

Ι Τι
where Φ(ΐ4, t) =

{u + a)(u + b)(u + c)(u + t)'

Remark. In the classical theory of a real rigid body the principal moments of iner-
tia satisfy the triangle inequalities. However, the Euler-Poisson equations make
sense for arbitrary moments of inertia. Therefore, instead of restricting the 'set
of rigid bodies' by the triangle inequalities, we shall consider all possible triples
I/A, l/B, 1/C that satisfy just one condition I/A > l/B > 1/C. The same Euler-
Poisson equations describe the geodesies on the Poisson sphere and are valid for
any I/A > l/B > 1/C.

These results follow from the general theory of orbital classification of non-
singular integrable systems with two degrees of freedom on three-dimensional energy
levels developed by Bolsinov and Fomenko in [28] and [29].

A system is called non-singular if it has a Bott integral (on the given energy level),
that is, the critical points of the integral form non-degenerate critical manifolds.
The theory is based on the study of new topological invariants (rough molecules
and marked molecules) of integrable systems discovered by Fomenko, Zieschang,
Bolsinov and Matveev in [l]-[3]. The idea of the theory is to associate with every
integrable system a certain invariant, which is, in fact, a labelled graph and has
been called by us a t-molecule. Central to the theory is the assertion that two
non-singular integrable systems are topologically orbitally equivalent if and only if
the corresponding ί-molecules are the same. Furthermore, it turns out that these
invariants can be computed successfully in many concrete problems, leading to the
results stated above.

Once continuous (that is, topological) orbital equivalence of the Euler and Jacobi
systems is discovered, the natural question arises of whether or not the systems are
topologically adjoint, that is, exactly equivalent. Perhaps there is a homeomorphism
from one space to the other taking any exact solution into an exact solution (with
the time preserved).

It turns out that this is not the case.
First of all, let us explain that the Euler and the Jacobi problems are both

three-parameter problems. The geodesic flow on an ellipsoid is defined by the three
squared half-axes a,b,c and the Euler system by the principal moments of inertia
I/A, l/B,1/C of the rigid body. If a = b = c for an ellipsoid, then a sphere is
obtained. But if I/A = l/B = 1/C for a rigid body, then we are dealing with a
rigid ball. It is easily seen that the two systems are just the same in this case.

Theorem 16 (Ο. Ε. Orel). The geodesic flow of any three-axial (that is, other
than a sphere) ellipsoid restricted to any three-dimensional manifold of constant
energy is not topologically adjoint to any Euler dynamical system for a rigid body.
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The idea of the proof of Orel's theorem is to compute and compare certain
invariants of the dynamical systems under consideration.

As was demonstrated by Bolsinov and Fomenko in [15], [28], and [29], in the
case at hand the topological orbital type of the integrable system is completely
determined by two invariants k and I for the Jacobi problem and, respectively, Κ
and L for the Euler problem. The point is that each of the dynamical systems to be
compared has two stable periodic trajectories. The invariants k and I are the limits
of the winding numbers of the dynamical systems as the Liouville tori approach
these trajectories (in the limit the torus degenerates, turning into a circle). In
the Jacobi problem these periodic trajectories have a clear geometrical meaning.
They correspond to two stable closed geodesies, the equatorial plane sections of
the ellipsoid in the directions perpendicular to its longest and shortest axes. In
the case of the Euler problem the analogous periodic trajectories correspond to
rotations of a rigid body about its maximum and minimum axes of inertia. Here
the corresponding limits of winding numbers give the invariants Κ and L.

The invariants kj and K, L are functions of a,b,c and A,B,C, respectively.
Furthermore, the aforesaid relationships betwen the parameters of an 'orbitally
equivalent' ellipsoid and a rigid body mean precisely that

k(a,b,c)=K(A,B,C) and l(a,b,c) = L{A,B, C).

But since we are now interested in the problem of comparing these two systems
from the viewpoint of their adjointness, the two aforesaid invariants must be supple-
mented by at least three new ones, namely, the periods of the three closed singular
trajectories. Two of them have been described above. These must be supplemented
by one more unstable periodic trajectory, namely, the hyperbolic geodesic of an ellip-
soid and, respectively, the unstable rotation of a rigid body about the middle axis
of inertia. We denote these additional invariants by fi, fr>, t3 for the Jacobi problem
and by J\,T2,X3 for the Euler problem. As a result, the topological adjointness
class of the Jacobi system is defined by a system of invariants certainly containing
the five numbers

k, I, tu t2, i3,

and, respectively, for the Euler system

K, L, Τι, T2, T3.

It proves useful to state the explicit expressions for the periods of closed trajec-
tories in the Euler and Jacobi problems.

In the Jacobi problem the period of a closed geodesic is simply equal to its length.
For the periods in the Jacobi problem we thus obtain

o
Ίττ

t-2 = / Vacos2i + csin2 tdt,
Jo

,-2π

t3 = / vo cos2 t + csin2 tdt.
Jo
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In the case of the Euler problem the periods of motion along the three closed
trajectories have the form

In both cases we assume that the energy Η is equal to 1, that is, the energy level
is fixed for both problems.

Since the Jacobi problem is a three-parameter one, assigning to every three-
axial ellipsoid the aforesaid five numbers we obtain z, smooth transformation of the
three-dimensional set of all three-axial ellipsoids into the five-dimensional Euclidean
space. As a reuslt, we obtain a 3-surface in R5. We dentoe it by J 3 . Following
the same scheme for the Euler case, we also obtain a 3-surface E3 in the same
five-dimensional space i?5.

To prove that the Jacobi and Euler problems are not topologically adjoint, it
suffices to verify that these two three-dimensional surfaces do not intersect one
another in R5, except at one point corresponding to the case a = b = c and
A = Β = C, that is, the case of the standard 2-sphere.

After some analytic transformations this problem can be reduced to the fol-
lowing question: do two certain smooth curves intersect one another on the two-
dimensional plane? They both start from the same point corresponding to the
case a = b = c (in the Jacobi problem) and A = Β = C (in the Euler problem).
Theorem 16 follows from the analytically verifiable fact that these two curves do
not intersect one another (except at one point, from which they start).

Finally, one more natural question arises: are the Jacobi problem and the Euler
case orbitally equivalent?

This problem was completely solved by Bolsinov. The answer is that the Euler
and Jacobi problems are not smoothly orbitally equivalent.

This answer can be obtained as follows. One must use the theory of smooth
orbital classification of integrable Hamiltonian systems with two degrees of freedom
constructed by Bolsinov [33]. Namely, one must compute smooth invariants of the
systems under consideration and then compare them.

It turns out that it suffices to consider only one smooth invariant. Each of
the two (Euler and Jacobi) systems to be compared has one unstable hyperbolic
closed trajectory (to within the change to the opposite direction of motion). In
fact, there are two such trajectories if we take the direction of motion along the
hyperbolic circle into account. This hyperbolic trajectory has a natural smooth
orbital invariant, namely, the multiplier, being an eigenvalue of the differential of
the Poincare map. For our two systems (Euler and Jacobi) these multipliers can
be computed explicitly.

Here it proves more convenient for us to specify not the multiplier λ itself, but
the inverse of its logarithm. For the Euler case and the Jacobi problem we denote
this invariant by M(A,B,C) and m(a,b,c), respectively. It has the form

M(A,B,C) = --
* y/(C - B)(B - A)'

/ 6
, , , V (c-b)(b-a)

m(a,b,c) = XJ5
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Now we consider two two-dimensional surfaces in the three-dimensional space R3,
which can be interpreted as the space of values of the invariants:

χ = K(A,B,C) ) (x = k(a,b,c)
y = L(A,B,C) \, 2=< y = l(a,b,c)
z = M(A,B,C) J [z = m(a,b,c)

These surfaces are images of the maps from the parameter spaces to the space of
invariants.

If the position of the surfaces relative to one another is known, then we can draw
certain conclusions.

If the surfaces do not intersect at all, then certainly not a single pair (rigid
body, ellipsoid) exists for which the corresponding dynamical systems are smoothly
equivalent (even in the sense of C1-smoothness, since Μ and m are, as is easily
seen, C1 -invariants).

If the surfaces are equal to one another, then this becomes a strong argument
supporting the possibility that the systems under consideration are smoothly equiv-
alent, since such an equality can hardly be accidental. Of course, in this case the
study would need to be continued: we would have to compare all the remaining
smooth invariants.

If the surfaces intersect one another along a curve, it means that the systems
under consideration are not smoothly equivalent, as a rule. But there are some
'exceptional' pairs (rigid body, ellipsoid) for which at least three invariants are the
same. Then, in fact, we would have to compare all the remaining smooth invariants
for these exceptional pairs. Besides, in this situation it would be natural to go over
to studying the problem of C1 -equivalence. It can be demonstrated that, apart from
the above three invariants, there is precisely one more C1-invariant. To answer the
question fully it would be sufficient to analyse the relative position of two two-
dimensional surfaces in the four-dimensional space of invariants. Their points of
intersection would correspond to pairs of C1-equivalent systems.

This is a possible general scheme of analysis, which can also be applied in other
situations. In our case, because the explicit formulae are quite complex, Bolsinov
carried out a computer-aided study of the problem in collaboration with Professor
Dullin (Institute of Theoretical Physics, Bremen University, Germany).

The surfaces £ (the Euler case) and d (the Jacobi case) have been constructed
with the aid of a computer. It turned out that the qualitative beahviour of these
surfaces is very similar. They both are graphs of certain functions ζ = zg,(x, y) and
ζ = z3(x,y).

This numerical study indicates that the surfaces £ (the Euler case) and 3 (the
Jacobi case) do not intersect one another: the difference zz(x, y) —ζ$(χ, y) is always
negative, asymptotically approaching zero as the surfaces go off to infinity.

This method is of course just a numerical experiment, on which one cannot
base a formulation of the result as a rigorously proved theorem (the surfaces may
intersect one another somewhere far away). However, it is certainly a rigorous
result that these two surfaces are not the same. In particular, this means that
continuously orbitally equivalent pairs (rigid body, ellipsoid) cannot, as a rule, be
smoothly equivalent (even in the sense of C1 -equivalence).
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