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Various Aspects of n-Dimensional Rigid Body Dynamics

YU. N. FEDOROV AND V. V. KOZLOV

Before we start to consider the motion of a “multi-dimensional body,” it is useful
to answer a question usually ignored by mathematicians dealing with this subject.
Namely, is there any sense in such an occupation? Concerning the physical aspect,
the answer seems to be negative. It does not even matter that the space in which we
live is definitely three-dimensional. The main reason is deeper. As early as at the
end of the last century, Paul Erenfest, the prominent physicist of the time, noted that
in the n-dimensional space rigid bodies and even matter itself, as we understand it,
could not exist. Such an unexpected conclusion is based on the natural assumption
of universality of the energy conservation law and its mathematical expression, the
Gauss-Ostrogradskii principle. It follows from the latter that in the case n # 3
any central force must vary with the distance from an attracting center according
to a law which is different from the Newtonian inverse square law. By the known
theorems of dynamics, this implies that stable stationary orbits in the classical and
quantum two body problems—the simplest models of the atom—cannot exist.

However, one should not hurry with the conclusion that the n-dimensional
top and similar objects are no more than toys for mathematicians. There are
several examples when equations of multi-dimensional dynamics can describe real
mechanical systems.

Besides, while various Lie group constructions allow one to “see” multi-dimen-
sional systems, studying such systems gives a remarkable opportunity to understand
the properties of abstract groups better. In the present article, we consider multi-
dimensional systems as the main source of new interesting integrable problems.

§1. Momentum theorem

In classical mechanics the term “momentum” is usually associated with a lin-
ear momentum (impulse), or an angular momentum, or a momentum of a force
(torque) relative to an axis or a point. At the same time, this term has a universal
interpretation and can be related to various geometric objects playing a major role
in the description of dynamical systems.

Let M" be the configuration space of a mechanical system with »n degrees of
freedom. Suppose an arbitrary Lie group & acts on M". Let g be the Lie algebra
of ® and g* the space of linear functions on g (the dual space). To each vector
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Y € g there corresponds a one-parameter subgroup 8 C &, @ € R, whose action
on M" determines the tangent vector field

(L1) vy (x) = 2 65(x)
a=0

The mapping ¥ — vy is a homomorphism of the Lie algebra g to the Lie algebra
of all vector fields on M” (if Y — vy and Z — vz, then vy, z; = [vy, vz]).

Let T: TM" — R be the kinetic energy of the mechanical system, which defines
the inertial properties of the system. Here TM" is the tangent bundle of M". In
the applications, T is usually a positive definite quadratic form. We may think of it
as a Riemannian metric on M". Define the function

(12) Tolr, 41 1) = (G5 o) = 3 SE 0

Under changes of the local (generalized) coordinates (x1, ..., xn), the collection
of the derivatives 8T/9x; transforms according to the covariant law. Therefore, the
function Zg (x , X | Y) does not depend on the choice of coordinates. Besides, it is
a linear functionin Y,so Zg € g*.

The kinetic momentum of the mechanical system relative to the Lie group & is,
by definition, the mapping Zs: TM" — g* that assigns to each point (x, x) of the
phase space TM" the linear function Zs(Y) on the algebrag. Let y1, ... , y» bea
basising and f', ... , f" be the dual basis in g* with respect to the bilinear form
(-,-)ong x g* such that (y;, f/) = &/. Then the function Ze(Y) is uniquely
defined by the vector K = K f' + -+ + K, f" € g* such that

(1.3) Ta(¥) = (Y, K), .

The vector K is also called the kinetic momentum!.

ExaMpLE 1. Let the mechanical system be a set of mass points my, ... , my
with the position vectors 1, ... , ry € R3. Consider the action of the Lie group
E(3) on the configuration space M" = {r, ... , ry}, n = 3N. Recall that EQ3)
is the group of all rigid motions of three-dimensional Euclidean space R3, ie.,
compositions of rotations and translations of this space:

ry — Rry + 5, k=1,...,N.

Here R: R? — R? is an orthogonal rotation matrix, s € R? is a translation vector.
The action of a general one-parameter subgroup R (a) of E(3) is realized as a

helical motion of the space R?, i.e., it is the rotation about a fixed axis / through the

angle ow (w = const) followed by the translation s = av; along the same axis:

r;(—vR[(a)(rk—a')er—kavl, k=1,...,N.

'In the sequel, instead of saying “the kinetic momentum relative to the group SO(3) (or even the
group SO(n))”, we shall use the classical term “angular momentum”.
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Here I = {e;t +d | t € R}, where ¢, is the unit vector along this axis, d € R?
is a constant translation vector, v, is a velocity vector, « is the parameter of the
subgroup. Using homogeneous coordinates in R>, we can write

re — Rla)rg,

Ri(a) = (R"(()a) d- Rl(al)d +av’) , re =(rers reas ey, 17T

The element of the Lie algebra e (3) generating the given one-parameter subgroup
is represented by the screw velocity matrix

(14) =2 = (

Q v, —Qd 0
Oo 0 ’

0 Q_aaR( )R—l(a)’

where Q is a skew-symmetric 3 x 3 matrix (an element of the Lie algebra so (3)):
Qop = eapyy, a, B,y =1,2,3,and 0 = = we = (@1, wy, 3)7 is the angular
velocity vector directed along the axis /.

Accordingto (1.1),on M” = {r;, ... , ry} this matrix generates the vector field

vm:{wx(rl—d)—i—v;,... ,a)x(rN—d)+v1}={QHr1,... ,QUI‘N}.

Using the expression for the kinetic energy

T ..
T=s5 > milie, #4)
k=1
and the definition (1.2), we obtain the following linear function on e (3):

(1.5)
N
IE(3)(r) ¥ I QH) = ka(':k’ @ X (rk _d) +Ul) = (CU, Md) + (UI: P):
k=1
N
My=) (n—d)xmp,  p=> m.
k=1
We see that M, is the angular momentum of the system relative to the origin

displaced at the vector d, whereas p is the total momentum of this system.
Now for any two matrices

|4 V-
9171=<%1 0'), Qﬂz=<%2 02), Q,Qes03), Vi, V2eR,

we define the Euclidean bilinear form (- , - ) on ¢ (3) x ¢*(3) as follows

(1.6 (21, 90) =~ (@) + (1, V2).



144 YU. N. FEDOROV AND V. V. KOZLOV

The first term at the right-hand side is the Killing form of the Lie algebra so (3), i.e.,
the scalar product invariant with respect to the adjoint action of the rotation group
SO(3). Comparing the expressions (1.6) and (1.5), one can rewrite the latter in the
form

Tr3 (W) = (W, K),

(17) K- (f‘gd g) €' (), (My)ap = Eapy(Ma),

According to definition (1.3), the matrix K represents the kinetic momentum of
the system relative to the group E(3).

In the special case s = 0, the group E(3) is reduced to the group SO(3), the
corresponding one-parameter subgroup R () is generated by the angular velocity
matrix Q, and from (1.5) we obtain

1 - —
Iso3)(Q) = (@, My) = ) tr (QM)) , (Mo)ap = apy (M),

i.e., the kinetic momentum relative to the group SO(3) is represented by the 3 x 3

matrix A/l\o € so*(3), which is isomorphic to the vector M of the classical angular
momentum relative to the origin O.

The action of the group & on M" may depend on time ¢. An example is the
group of rotations of Euclidean space about a moving axis. In this case the vector
field (1.1) depends on ¢, which should be regarded as a parameter.

Note that the action of & on M" extends naturally to an action on TM".
Therefore, one can speak about invariants f : TM" — R of the action of the group
®: these are the functions that are constant on the orbits of the action of this group
on TM". The condition for a function f(x, x) to be invariant has the form

= (8_f_,i)y) + (?—Ji,vy) =0 forallY €g.
a=0 ox Ox

If f = T is the kinetic energy of a mechanical system and 8T/8x = 0, then, in
view of (1.2), (1.3), condition (1.8) can be represented in the form

d

(18) S-S (@3(x, %)

(1.9) (Y,K)=0 forallY €g.

For example, let & be the group S; of translations of the space R? along the
moving axis / with unit vector e(¢). The group S; can be regarded as a one-
parameter subgroup of the translation group R?. Put g = R*in (1.9). Then the
invariance condition for the function T (x) takes the simple form

(1.10) (p,é)=0.

A less trivial example arises when & is the group R, = S 0(2) of rotations of R?
about the same moving axis that passes through a moving point with the position
vector s(¢). Similarly, the group R, can be considered as a one-parameter subgroup
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of the group E(3) generated by the element 20, of the algebra e (3) (compare with
(1.4)):

Q -Q
(1.11) m=(01 O’S), Qup = Eapyd,

Here w; = we (t) is the angular velocity of rotation about the axis /. According to
(1.9), the invariance condition for the kinetic energy is (20, , K Yesy = 0, where K
is the kinetic momentum relative to the group E(3) defined in (1.7). In the vector
form, this condition transforms to

(1.12) (p,(sxe))+ (Mo, e)=0.

Here M is the angular momentum of the system relative to the origin O. Note that,
as one may expect, the obtained condition depends only on the Pliicker coordinates
(s x e, e) of the axis /, but does not depend on the coordinates of the position
vector s itself. In particular, if the axis / does not change its direction in space, then
(1.12) takes the form

(1.13) (e, s x7c)=0,

where rc = Zmyry /Zmy is the position vector of the mass center C. This condition
was obtained by Chaplygin in connection with a generalization of the angular
momentum theorem (the area theorem) in certain mechanical problems (1897, [7]).
It is obviously fulfilled provided the axis / always passes through the mass center.

Now consider the general situation, when the following constraints are imposed
on a mechanical system:

(1.14) filx, %)== fulx, %) =0.

In applications, the functions f; are usually linear in the velocities x. Assume
that the gradients 8f,/3%, ... , 8f,,/0x are linearly independent. If equations
(1.14) can be reduced to the form

(1.15) hi(x) =+ = hn(x) =0,

then the constraints and the mechanical system itself are called holonomic (following
H. Herz).

A simple example of a nonholonomic system is a ball rolling without sliding on
a horizontal plane (the velocity of the contact point equals zero): without violating
the constraints, the ball can be transformed from any configuration to any other
one.

The action of the group ® is said to be consistent with the constraints (1.14) if

8[ .
(1.16) (a—j;,vy)=0, foral Yeg,i=1,...,m.

In the case of integrable constraints (1.15), this is equivalent to the invariance
of the functions A, ... , h,, with respect to the action of & on M". The tangent
vectors vy satisfying condition (1.14) are called virtual velocities.
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The equations of motion of nonholonomic systems can be written in the form of
Lagrange equations with multipliers

or\  oT 7L Of
, ) == F+ Y it
(117) (ax) Ox + — A 0x;
where F = (Fy, ... , F,) are generalized forces. These equations, together with

the constraint equations (1.14), constitute a closed system for determining the
generalized coordinates x and the multipliers 4; as functions of time.

As well as the gradients 97/9x, the generalized force F is a covector. Hence, by
analogy with (1.2) and (1.3), it is natural to define the mapping

Py(x, x| Y)= ZFvy Y).

This is the torque relative to the group . The same name is given to the vector
§ € g* that uniquely defines the linear function ®g(x, X | ).

THEOREM 1. Suppose that the kinetic energy of the mechanical system is an in-
variant of the group &, and the action of this group is consistent with the constraints.
Then for any Y € g the following relation holds

d
(1.18) 2 Zelx, 2| V) = @e(x, x| Y),

which, in view of (1.16), (1.18), implies the equation in g*

iK:%.

(1.19) 7

This theorem goes back to Lagrange and Jacobi, who noticed the connection
between conservation of momentum and angular momentum, and the groups of
translation and rotation respectively. If the forces are potential (F = —8V/8x) and
the potential energy V': M" — R is invariant with respect to the action of the group
®, then (1.18) yields the first integral Zs (x , X) = const. This is a classical result
of E. Noether (1918).

PrROOF OF THEOREM 1. According to (1.16) and (1.17), we have

oT oT
% Y_a_xUY—FUYs

or, in another form,

or N _[oT, .9 1_~r
ax ¥ ax Y Tk VY| T

The expression in the square brackets vanishes by the invariance property of the
function T'.
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COROLLARY. Suppose that condition (1.10) is fulfilled and the vectors v, =
{e, ..., e} are virtual velocities on the configuration space M" = {r\, ... , ry},
i.e., the constraints admit infinitesimal translations of the point mass system as a rigid
body along the axis |. Then, by (1.18),

(p,e) =(F,e).

Inasimilar way, if condition (1.12) is fulfilled and the constraints admit infinitesimal
rotations of the system as a rigid body about the (moving) axis I, then the following
angular momentum theorem holds

M= Mg, e),

1.20 al Al
( ) M;:(Z(rk—d)xmkfk,e>, MF:Z(rk—d)XFk.

k=1

ExaMmPLE 2. As a remarkable application of Theorem 1, we consider Chaplygin’s
problem on a dynamically nonsymmetric ball rolling without sliding on a horizontal
plane H (1903, [7]). The mass center C of the ball is assumed to coincide with its
geometric center. Here the configuration space is the group E(3), i.e., the set of the

matrices
_ (R rc
=5 )

where R € SO(3) is the orthogonal rotation matrix of the ball, r¢ is the position
vector of the mass center C with the initial point at the origin O of a fixed frame
(we assume that O belongs to the plane H). Let P be the point of contact of the
ball with the plane H. Then the condition for rolling without sliding has the form

(1.21) vp=Fc—wxpy=0,

where w , p are the angular velocity and the radius of the ball, y is the vertical unit
vector.

Converted to scalar form, condition (1.21) gives three nonholonomic constraints
(in addition to one holonomic constraint (rc , y) = p).

PROPOSITION 2. The constraints (1.21) admit infinitesimal rotations of the ball
around the contact point P.

The proof is obvious: under any such rotations one has vp = 0, which coincides
with the condition (1.21).

However, it is useful to consider also the following formal proof relying directly
on the invariance condition (1.28). Since the constraints (1.21) depend neither on
the orientation of the ball nor on its position on the plane H, it is sufficient to verify
this invariance condition for only one configuration (i.e., at a certain point on the
group E(3)). Assume that this configuration (point) is the identity of the group.
Picking the expressions for the screw velocity (1.4) and the bilinear form (1.6), then
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taking into account the relation rp = rc — py, one can represent the constraint
equations (1.21) in the following way

0 R, R; ~R, 0 0
_ —~R2 0 0 _ 0 R3 1
Ny = —-R; 0 0 o M= ~-R; 0 0]°
0 0 0 0

0 —-R;
1 Ry 0

0

R,

0

0 0 0
0

0

1

0 0 0

1
0
0
0
0 0 -—-R
0
R
0

where Ry, R;, R; are the projections of the position vector rp to the fixed axes, and
the form (-, - ),(3) is specified in (1.6).

Using the terminology introduced above, one may call the matrices N, the
momenta of constraints (1.21) relative to the action of the group E(3). These stand
for the covectors 8f;/8x in (1.16). According to (1.11), the velocity vector vgy in
e (3) = T.E(3) induced by infinitesimal rotations around the point P is represented
by matrices of the form

[ Q —Qrp
Qn,_(o : )Ee(3)

(the axis / passes through P). It follows that
(No, )3y =0 forany/,

i.e., condition (1.16) is satisfied on T,E(3) and, as a consequence, on the whole
tangent bundle TE(3).

Besides, for any axes/ passing through the contact point P, Chaplygin’s condition
(1.13) is also satisfied. Since the torque of the constraint reaction at P relative to P
is zero, Theorem 1 and equations (1.20) imply that the angular momentum of the
ball Kp relative to the same point turns out to be a fixed vector in space.

Then, according to a well-known theorem of mechanics, we may write

(1.22) Kp=Kc+pyxp, p =muc,

where m is the mass of the ball, K¢ is its angular momentum relative to the mass
center C.
In the moving axes attached to the ball, the momentum K satisfies the equations

(1.23) Kp+wxKp=0,
where, in view of (1.21), (1.22), one can put

Kp=1Iw+ Dy x (wx7y), D =mp?,
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I being the inertia tensor of the ball relative to the C. Then equations (1.23),
together with the Poisson equations, form a closed system for determining w(t) and

y(2):

Ao = Ao x w + (D/p)(Aw x @) A7)y,

(1.24) . -1
j=yxo, @=1-D(,AY).

From (1.23) and (1.24) it follows immediately that the system has three indepen-
dent geometric integrals

(K, K)=(Aw, Aw) - 2D(Aw, 7) + DX w, ),

(125) (K’y):(la),}’), (V,V):lﬂ

as well as the kinetic energy integral
(1.26) (K, w)=(Aw, w) — D*(w, 7).

Besides, as shown by Chaplygin [7], in the phase space (w , y) the system possesses
an integral invariant with density

(1.27) =P

Therefore, by the well-known Jacobi theorem on the last multiplier, equations (1.24)
are integrable by quadratures.

After Chaplygin, various integrable mechanical generalizations of the problem
were found in [8, 13, 17] (see also Example 3 for a multi-dimensional generalization).

§2. Multi-dimensional dynamics

Now we proceed to the generalized Euler problem concerning the free motion
of an n-dimensional rigid body around the fixed point in R*. This problem can be
regarded as a classical one, since the idea of such a generalization was stated by
A. Cayley as early as in the middle of the 19th century [6]. At present there exists
a great number of publications devoted to this problem. Nevertheless, using the
momentum theorem, here we give a detailed derivation of the equations of motion in
order to set the background for constructing more complicated multi-dimensional
systems.

What can be taken for the configuration manifold of the n-dimensionai rigid
body? The answer to this question is not unique. One may think of this manifold as
a set of all positions of the body. It is known to be the group SO(n), i.e., the group
of orthogonal rotation matrices R () such that

(21) rr‘—'R(t)P: ":,PGR",

where p is the position vector of some fixed point of the body relative to some frame
B attached to the body (i.e., p = const), while r, represents the same vector relative
to some fixed frame. The components of the matrix R stand for the redundant
generalized coordinates on SO(n). In this case there are no constraints imposed.
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At the same time, the configuration manifold can be defined as a set R of the
position vectors of all points of the body

Rz{rl,rz,...,rN}:R"xR"x-~-xR".

Itis obvious that this manifold is actually infinite-dimensional and the generalized
coordinates r;, 2, ... , ry are strongly redundant in view of a great number of
constraints fixing distances between all points of the body, as well as their distances
from a fixed point O. These constraints are obviously invariant with respect to the
action of the group SO(n).

In the sequel we shall operate with both configuration varieties.

Differentiating (2.1), we can write

Feo=Qur,, Q. = RR".

As in the three-dimensional case, the matrix Q, is called the angular velocity of the
body relative to the fixed frame (the spatial angular velocity). This matrix turns out
to be skew symmetric and, thereby, it is a vector in the Lie algebra so (n).

Now let v be the velocity vector of a fixed point taken in the moving frame B:
v = R~'#,. Then

(2.2) v=Q.p, Q. =R'R,

where Q. € so(n) is the angular velocity matrix in the frame attached to the body
(the body angular velocity). Itis said that Q. and Q, arise as a result of left and right
displacements (multiplications by R~') of the tangent vector R € TxSO(3) to the
algebra so (n) = TpSO(n) regarded as the tangent linear space at the identity £ of
the group. Conversely, on the group regarded as a manifold, any matrix Q generates
the left-invariant (right-invariant) tangent vector field v(R) = RQ € TxSO(n)
(v(R) = QR € TrSO(n)), where R runs through the group SO(n).

From (2.1) and (2.2) we find that the angular velocities in the space and in the
body are related as follows

(2.3) Q, =RQR',

or, in the vector form,

QA‘ = AdR Q: ) s_2\ ’ Q(' € R™ ’
Adg: R” - R, m =dim(so(n)) =n(n—1)/2,

where Adp, is the operator of the adjoint action of the group SO(n) on the algebra
so(n).

Using (2.2), we write the kinetic energy of the n-dimensional body in the form

N
(2.4) T = lzmi(ff , Fi) = lZ"@'(er)i , Qepi), p = const,

il il



VARIOUS ASPECTS OF n-DIMENSIONAL RIGID BODY DYNAMICS 151

where (- , - ) is the Euclidean scalar product in R".

Now consider the right action of the group SO(n) on itself: R —» RG (G
runs through SO(n)). A one-parameter subgroup of this action is R exp(Q.a),
a € R, where Q, is an arbitrary fixed vector in the algebra. According to (1.1),
on the group regarded as a configuration manifold, each subgroup generates the
left-invariant vector field

d
— Rexp(Q.a) = RQ,.
da

a=0

On the configuration manifold R specified above, the same subgroup generates
the vector field {RQ.p;, ..., RQ.py}. Then, by the general formula (1.3), the
kinetic (angular) momentum of the body relative to the right action of the group
SO(n) is defined as follows

N aT N
Isowm) = Z (37 , RQL-P:‘) = Zm,-(vi , Qepi) = (Q, M),
! i=1

i=1

N
M. = Zmi(viriT —rivl) € s0™(n).
i

Here the bilinear form (-, -) on so(n) x so*(n) is also the Killing form of the
algebra so (n):

1 1 "
Q, Q) = ) tr(adg, adg,) = ) tr(QQ,) = Z(Ql)ij(QZ)ij
i<j

for all Q,, Q, € so(n). Since v] = pI QT = —pI Q.. we obtain

[§

N
(2.5) M =19 +Ql, I =Y mpp| =const,

or, in vector form, M, = A4;Q., A;: R" — R™.

The skew-symmetric matrix M, and the symmetric matrix /. are called the angular
momentum of the body and its mass tensor in the moving frame respectively. Then it
is natural to call the symmetric operator A; the inertia tensor of the n-dimensional
rigid body. Similarly to 7., it is a constant tensor. In certain axes of the moving
frame appropriately chosen tensors I. and A; transform simultaneously to diagonal
form:

I = dlag(ll y ey In) ) (Ml‘)ij = (Il + I_/)(Qt')ij .

In a similar way, the one-parameter subgroups exp(Q,a) R, o € R, Q, € so(n)
of the left action R — GR of SO(n) generates on the manifold R the vector field
Q,r;. To this field there corresponds the kinetic momentum

N aT N
Isow = Z (a—r, s RQ,J:‘) = Zmi(f:‘ s Q.\'ri) = (Q.\- s M;\‘>,\"(,(n) ,

Mx - ].\‘Q.\' + Q.\'I.\' € SO*(n) ’ M.\' - AIQA' .
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Here M, I,, and A; represent the angular momentum, the mass tensor, and the
inertia tensor of the body in the fixed frame (in the space).

Since the Killing form on so (n) is invariant with respect to Ad-transformations,
M; and M, are transformed just as the angular velocities:

(2.6) M, =RM.R™' or M,=AdgM..

This enables us to regard . and M, as vectors in the same space so (n) = R™. The
operator A; defines on so (n) the nondegenerate scalar product ( , ).a:

(Z,0u=(Z,A0)=(AZ,Q) Z,Q¢€s0(n),
which, in turn, defines on the group the left-invariant metric (- , - )4

(v1, v2)a = (R vy, R ) 4 vy, vy € TRSO(n).
Then the kinetic energy (2.4) is represented in the form

T = l (R » R)A ’
2

and, therefore, it is a function on 7SO(n) invariant with respect to the left action
of the group.

The condition of free motion of the body implies the absence of torque relative
to the action of the group SO(n). Then, by Theorem I, the angular momentum M
relative to left action of the same group is constant.

Differentiating (2.6) and taking into account (2.2) along with the condition
M; = const, we obtain the generalized Euler equations describing the evolution of
the angular velocity and of the angular momentum in the body

(2.7) M. +[Q., M]=0.
The substitution M, = I.Q. + Q.. turns (2.7) into a closed system of m scalar
equations

(2.8) (Ii+lj)Qij:(Ii“lj)ZQikaja i<j=1,...,n
k=1

(the subscript ¢ is omitted).
These were first represented in the explicit form by Frahm (1874) [10], who
considered them together with n? kinematic equations

(2.9) R=RQ..

The latter can be used to determine the position of the body in R”, i.e., the coor-
dinates in the group SO(n). Frahm also found a collection of first integrals of the
joint system (2.8), (2.9) in the form

(2.10) > M. |5 = const, k=2,4,...,2[n/2],
J

(2.11) E(MC)MIQU-,,,S = const, i<j=1,...,n,

u<s



VARIOUS ASPECTS OF n-DIMENSIONAL RIGID BODY DYNAMICS 153

where J = {i|, ..., ik}, iy < -+ < i, is a multi-index of order k, |M.|} is the
corresponding k-order diagonal minor of M., and R ij , us are the 2 x 2 minors of the
rotation matrix R standing at the crossings of ith, jth columns and uth, sth rows.
These integrals generalize the angular momentum integral and the area integral in
the classical Euler problem.

Besides, it is easy to show that system (2.8) possesses the energy integral

(2.12) Q., M) =1, ! = const.

It is known that, as in the classical case n = 3, the Euler-Frahm equations
(2.8), as well as the corresponding kinematic equations (2.9), are integrable, and
the components Q;; , R;; can be expressed in terms of theta-functions of complex
time . Moreover, as follows from [16], both systems remain integrable under the
more general relation between the angular momentum and the angular velocity:

a; +a;
2.1 M.)i; = l z c)ij s
213) (MO = 3 (@
whereay, ... ,a,, by, ... , b, are arbitrary fixed parameters (when b; = I;, a; =

I?, we come back to (2.5)). For the case n = 4, the integrability condition (2.13)
was, in fact, obtained by Frahm, while the analytical study of the problem was
performed by Schottky (1891) [21].

ExaMmrLE 3. Using the construction introduced above, let us consider the gener-
alized Chaplygin problem on an n-dimensional ball rolling without sliding on an
(n — 1)-dimensional hyperplane H in R”. As in the case n = 3, this is a nonholo-
nomic system and its equation of motion cannot be obtained from any variational
principle. The only way is to use the momentum theorem for the group E (n), which
is the configuration space for the ball. For the case of an unconstrained motion in
R", this theorem is the generalization of the classical theorem which asserts that the
equations of motion of a rigid body split into the equations describing rotational
motion of the body and the equations describing motion of its mass center as a
mass point.

Lety € R" be the unit vector normal to the hyperplane H and directed “upwards”
(i.e., from H to the mass center C of the ball). Then, as before, p is the radius of the
ball, Qand M = IQ+ QI € so(n) are respectively its angular velocity and angular
momentum matrices, V¢ € R” is the velocity of the mass center which coincides
with the geometric center of the ball, vp is the velocity of the contact point P (here
and below all the tensor objects are taken in the frame attached to the ball). Now
replace the constraint vp = 0 by the reaction F € R” acting at P. Then in the frame
attached to the ball, we obtain the following equations

(2.14) M+[Q, M =M, m(ve + Que) =F 74+ Qy =0,

 where M € so*(n), M;; = p(F;y; — Fjy;) is the torque of the reaction F relative
to C.
The condition for rolling without sliding has the form

(2.15) vp=vc —Qy =0.
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Differentiating (2.15) and using the second equation in (2.14), we get
F = mey .

Substituting this expression in (2.14), we obtain

M+[Q, M]=D(QI +TQ), D =mp*, Tij =yy;,
r+[Q,I=0.

It is easy to show that this system can be represented in the following compact
commutative form

K+[Q,K]1=0, K=IQ+QI + D(I'Q+QI) € so*(n),

16 )
(2.16) F+[Q,I]=0,

where K and I + DT are respectively the angular momentum of the ball and its mass
tensor relative to the contact point P. So, we may introduce the inertia operator
A: so(n) — so(n) as follows:

. Y
(217) K=AQ= (A +ArQ, AQ=1Q+QI, ArfQ=TQ+QI.

Equations (2.16) can be uniquely represented in terms of Q, I'. So they form a
closed system for the determination of Q(z), y(7).

It follows from (2.16) that K, = Adg K is a constant vector in so (n). Since y is
constant in the space, the system (2.16) has a set of geometric integrals

trK* = const, tr(K‘[')=const, trlC =1,

(2.18)
s=2,4,6,...,1=1,2,3,....

These are generalizations of the classical integrals (1.25).

PROPOSITION 3. The system (2.16) has the integral invariant
/,udey, u=VdetA.

In the classical case n = 3, the density u coincides with the density (1.27) found
by Chaplygin.

PROOF OF PrOPOSITION 3. First note that the system (2.16) can be rewritten in
the form

(2.19) AQ = —adg A,Q,
(2.20) =—adgT.

Besides, in view of (2.17), (2.20),

(2.21) A=[Ar, ada).
4
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In order to calculate the divergence of the system in the phase space (Q, y)

n an ) "9 i
(2.22) A:Zﬁ;{ + a;
ij ] i

i<j

we define the m x m matrix
UQS =

where the indices Q, S range over the pairs (i, j), 1 <i < j < n. From (2.19) we
obtain

(223) U=—adg A; +ady, M= A;Q.

In view of the last equation in (2.14), the second sum in (2.22) vanishes. Therefore
we may write

A=tr(A"{U}), {U}:%(U+UT).

(Since Ais a symmetric matrix, the skew symmetric part of U does not contribute
to A.) Then, in view of (2.21), (2.23), and the identity

tr(A~'[4, adg]) =0,
we obtain
A=tr(A" (U +UT)2=1tr(A '[A4,, ada])/2
= —tr(A'[4r, adg])/2 = — tr(A~'.4)/2.

In conclusion, comparing this with the well-known identity

g?detﬁ: det]\\tr(.;l\‘]]b,

we have
_1.d(det A)/dr
2 detAd

Therefore, the function u = V det A satisfies the equation for the density of the
integral invariant:
p+Au=0.

Finally, in addition to the geometric integrals (2.18), the equations of motion
(2.16) possess the energy integral

(2.24) H(Q) = %tr(njg)
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(Eompa/{e with (1.26)). Indeed, taking into account (2.19), (2.21), and the property
AT = A, we obtain

H = tr(QAQ + QAQ/2) = tr (Q[A,Q, Q]) — (Q, (Aradg — adg Ar) Q)
— tr (QLAQ, Q) + tr(Q[ArQ, Q)),

which equals zero, since adg Q = 0 and tr (Q[X , Q]) = 0 for any matrix X.

It is natural to suppose that, similarly to the Manakov system, the equations of
motion of the n-dimensional Chaplygin ball are integrable, and, apart from (2.18),
(2.24), there exist other nontrivial integrals (integrals (2.18), (2.24) form a complete
set only for the classical case n = 3). However, the proof of this conjecture is still
unknown.

§3. Generalized Poinsot model

How can one obtain a qualitative picture of the motion of n-dimensional rigid
body in the integrable Euler-Frahm case? It is obvious that even if they are known,
the functions R;;(¢) can hardly be useful in this situation.

Recall that in the case n = 3 the remarkable Poinsot model of motion exists.
Namely, consider the inertia ellipsoid with fixed center O

V:{(x,Jx)=1}, x € R?,

which is attached to the body with inertia tensor J. According to this model, the
ellipsoid V rolls without sliding on a fixed plane 7. The latter is perpendicular to the
angular momentum vector M = Jow, which is also fixed in the space and is located
at constant distance //|M | from the center O (Figure 1(a)). The point P of contact
of the ellipsoid with the plane traces the curve on V called the polodia.

Indeed, due to the energy integral (w, Jw) = I, the end of the angular velocity
vector w always lies on V. Let 7 be the tangent plane of V at the contact point P.
Then the normal vector

n= %grad(x, Jx)
xX=w
coincides with the angular momentum vector M. Besides, the distance between 7
and the fixed center O is also constant: (e, n) = [. It follows from the condition
vp =@ X OP = 0 that the plane # remains fixed in space. ’

This model does not admit an immediate generalization to the n-dimensional
case, since for even n the skew symmetric operator Q is generally nondegenerate
and, as a consequence, an n-dimensional rigid body does not necessarily have a
rotation axis as the set of instantly fixed points. Therefore, a rolling-without-sliding
model cannot be realized in this situation. The way out is the following: instead
of rotation in R”, we can consider rotation in the m-dimensional space of the Lie
algebra so(n). To carry out this approach, we note that, in view of (2.3), (2.5),
(2.6), the mass tensor and the inertia tensor in the space and in the body are related
as follows

I, =RI.R™', I:R" - R",
A, =Adg A AdR',  AR" - R™
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Comparing these two formulas, we see that it is natural to consider Adg € SO(m)
as the rotation matrix of an imaginary m-dimensional rigid body whose axes are
attached to the eigen-axes of the tensor A, in R”. Such an m-dimensional body is
called the kinematical body.

Since the adjoint representation of the algebra so(n) is exact, the position of
the kinematical body in R” uniquely defines the position of the “physical” n-
dimensional body in R”.

Then from the equations

i.\' = [Q s Is] 3 A\ = [adﬂ 3 A\]

we find that adg € so(m) plays the role of the angular velocity matrix of the
kinematical body. In contrast to Q, the operator adg is always degenerate and
the “rotation axis” of the kinematical body is a whole r-dimensional linear space
passing through the point O:

Ann(Q) = {d e R" | adqd = 0}, r = rank (so (n)) = [n/2].
The space Ann(Q) is spanned by the matrices
(3.1) , ..., ).

Using the Cayley—Hamilton theorem, one may show that the other odd powers
Q', i > 2r — 1, can be represented as linear combinations of the vectors (3.1).
Furthermore, the Euler-Frahm equations (2.7) imply that for any degree i

M +[Q, M]1=0,

and, similarly to M,, the skew symmetric matrices M} = Adg M}, M} =
Adg Mf , ... turn out to be fixed vectors in the algebra so (n) (among them only
r vectors are independent). Therefore, these equations have r independent trivial
momentum integrals

(3.2) (M*=1, M*~'y = const, i=1,...,r,
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which are functions of r Frahm integrals (2.10).

Now consider the generalized Poinsot model illustrating the motion of the kine-
matical body. Let us deal with the simplest model corresponding to the “nonphysi-
cal” case Q = UM + MU, U = diag(a,, ..., a,) (the general case can be handled
in an analogous but more complicated way). Then equations (2.7), apart from the
integrals (3.2), also possess the following nontrivial independent integrals

(3.3) Hy (M) =tc{M", U*} = ., h = const,
m=2,4,...,2[((n=1)2], k=1,2,...,n—m,

where {M"™ , U*} are the homogeneous symmetric polynomials in the matrices M

and U of degree m and k respectively (the integral Hj|, up to the multiplication

by a constant factor, coincides with the energy integral (2.12)). Now let X;; be the
projections of a vector X € R™ = so(n) on the principal axes of A;. Let the inertia

ellipsoid
", X2
. 2 —h
Vo : {;ai—t—aj 21}

be attached to the kinematical body as well as the surfaces V,x (kK > 1), whose
equations in the same principal axes arise from the integrals (3.3) as a result of the
substitution

X,

M = .
a; + aj

The intersection of the surfaces Vy, Ve (kK > 1) define a surface V. Then we
define the (m — r)-dimensional linear space I = =, N --- N n,, where n; C R”
is the hyperplane orthogonal to the fixed vector M2 ~! in the metric (-, -). The
generalized Poinsot model is thus described by

THEOREM 4. The set of all positions {Adr} corresponding to rotations { R} of the
n-dimensional rigid body coincides with the set of all positions in R™ of the surface %
with fixed center O = {X = 0}, which rolls without sliding on the fixed linear space
I1 (see the sketch in Figure 1(b)). The polodia, as a set on the surface V traced by the

point P, turns out to be not a single curve, but a whole d-dimensional torus, the joint
level surface for the first integrals (3.2), (3.3).

In the case n = 3 the surface V coincides with the ellipsoid V, and the linear
space ITis merely the two-dimensional plane 7;, hence we come back to the classical
Poinsot model.

CoMMENTARY. Theidea of the kinematical body was first discussed in [14]. It was
proved that while this body rotates in the space R™ = so (n) according to the Euler—
Frahm equations, the inertia ellipsoid V rolls without sliding on a fixed hyperplane
n € so(n). However, in contrast to the three-dimensional case, for n > 3 the
construction {V, =} fails to solve the “inverse problem”, i.e., to recover the actual
motion of the kinematical body. Namely, this construction admits superfluous
positions of the inertia ellipsoid, and the contact point P on V, covers the surface

n X 2
VoU{Z (ai ‘:ai) = const},

i<j
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which is more than the d-dimensional invariant torus. The construction {V, IT}
defined in Theorem 4 is free of this shortcoming. However, it also fails to reconstruct
the motion of the kinematical body uniquely, since in the case n > 3 when we fix
any instant rotation axis OP or even a k-dimensional linear space Ann (Q) € R™,
we still leave some degrees of freedom for the surface V. Figuratively speaking, a
certain “looseness” occurs. As a consequence, when dealing with the generalized
Poinsot model based only on the first integrals, one cannot speak about the motion
of the m-dimensional kinematical body but only about its positions.

ProOF OF THEOREM 4. In view of the definition of the surface V, the end of the
vector Q = OP always belongs to this surface. Let the hyperplanes z; , ... , 7, pass
through P. The hyperplane 7, is obviously tangent to V; at P. Since II C r;, the
linear space I1 is also tangent to V C V.

Let n = M~ Y/|M*~!|, | M¥~| = \/(M?%=T M?-Ty be the unit normal
vector of 7. Then the latter is removed from the fixed center O at the distance
(Q, n;) = (UM + MU, M*~")/|M?*~1|, which, in view of the integrals (3.2),
(3.3) for k = 1, is constant. Thus, by the condition vp = 0, the linear space IT is
fixed.

It follows that the end of the vector € in the principal axes of the ellipsoid V, runs
over the intersection of the surface ¥ with V1, which is a d-dimensional invariant
torus, the level surface for all first integrals (3.2), (3.3). The same holds for the
trajectories of the Euler-Frahm equations in the phase space R” = so (n).

§4. Euler—Poincaré equations with constraints

Letvy, ..., v, be linearly independent vector fields on M”. Their commutators
[vi, v;] can be decomposed as follows

(41) [vl 3 v/] - ZCU X ) Vi 5 Clkj = —C.fi "

If f(x) is a smooth function on M", then

f= <g—£,x) :ivi(f)wia

where v;(f) = (8f/x , v;) is the derivative of f along v;. The variables »» depend
linearly on x:

n

(4.2) szzvi(xk)wi, 1<k<n.
i1

The variables w; may not be derivatives of globally defined coordinate functions
on M". For this reason the w;’s are called quasivelocities.

The use of quasivelocities in mechanics is motivated by the fact that equations
of motion written in terms of real velocities x often have a nonsymmetric and
cumbersome form. As an example, we may recall the equations describing the
rotation of a rigid body around a fixed point written in Euler’s angles (0, v, ¢),
which are globally defined coordinate functions on the group SO(3).
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Now rewrite the constraint equations (1.14) in the quasivelocities @y , ... , w,:
(4.3) filw,x) == fulo,x)=0 (m<n).

Then the Lagrange equations (1.17) for the case of the motion in a potential force
field with potential function ¥ (x) take the form

AL\ <~ k. 0L —, Ofs
(4.4) (aw,) - Z Cji@; B + v;(L) +zl:/1s %i,

Jrk=1

where £ is the Lagrangian L(x , x) = T(x, x) — V (x) expressed in terms of w, x.
These equations (in the absence of constraints) were first obtained by H. Poincaré
[20]. If the gradients

o1 Ofw

30 be
are linearly independent, then the multipliers 4, can be represented as functions of
x and w.

In general, equations (4.4) do not represent a closed system, and they must be
considered together with the geometric equations (4.2).

Now let M" be a Lie group &, and vy, ... , v, be the independent left-invariant
vector fields on & generated, according to (1.1), by basis vectors Y, ..., ¥, in
the Lie algebra g of the group &. Then the coefficients c’;,-, called the structure
constants of the algebra g, are fixed: ‘

[Y:, Yj1=) kY,
k

which is equivalent to relations (4.1). In this case the velocity vector x = (i, ...,
xn) € Ty® is generated by left translations of the vectorQ = w, Yy +- - -+, ¥ € &.
Suppose that the Lagrangian £ reduces to the kinetic energy (L = T) defined by
a nondegenerate left-invariant metric (-, -), on &. The latter is generated by the
corresponding scalar product (- , - ), on g. According to (4.2),

L= (x x) (va,,va) :%ZJ;_,-a),-w_,-.
J i

Here J;; = (v, ,), = (Y;, Y;); = const, because vy, ..., v, are left-invariant.

Consider the left action of the group ® on itself. Then one can consider the
kinetic momentum relative to this action. According to the definition (1.2) and by
(4.2), we obtain

K.-_I@(X XIY) (X,U_\-)j

RS ST S
i J

i

Therefore, for an arbitrary vector Y = y,.Y, + -+ + y, Y, € g, we have

(4.5) Te(x,%|Y)=(Y,K), K=0L/bw.
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Thus, according to (1.3), the vector K = (K, ..., K,)T € g* is precisely the
kinetic momentum which was to be found.

It is interesting. to study the case when, in addition to the Lagrangian £, the
constraint functions f, ..., f are also left-invariant, i.e., they do not depend
explicitly on x. Under this condition the equations (4.4), (4.3) form a closed system
on the Lie algebra g:

@6 K=Y kK + YA fi@)= = fal@) =0,
s=1 !

Jik=1

For the case ® = SO(3), systems with left-invariant constraints were first studied
by G. Suslov (1900, [22]). He considered rotations of a rigid body about a fixed
point under the action of the following nonholonomic constraint: the projection
of the angular velocity vector @ € R? to a certain unit vector ¢; fixed in the body
always equals zero:

(4.7) (w,e)=0.

The left action of the group SO(3) leaves the kinetic energy of the body and the con-
straint (4.7) invariant. Thus, one may call the equations (4.6) the Euler—Poincaré—
Suslov equations (EPS).

ExampLE 4. Consider the EPS equations on the Lie algebra so(n). How can
one write a multi-dimensional analog of the condition (4.7)? In order to answer
this question recall that, instead of rotations about an axis in the three-dimensional
case, in an n-dimensional case we have to speak about infinitesimal rotations in
the two-dimensional planes e; A e; spanned by the vectors of an orthonormal
frame ey, ..., e,. Suppose, without loss of generality, that in the condition (4.7)
e; = (1, 0, 0). Then this condition can be redefined as follows: only infinitesimal
rotations in the planes e, A 2, e; A e are allowed. Hence, it is natural to define
a multi-dimensional analog of Suslov’s condition in the following way: for an n-
dimensional body only infinitesimal rotations in the planes ey Ae;, j=1,...,n,
i.e., in the planes containing the vector e, are allowed. Therefore, we have the
following constraints imposed on the components of the angular velocity matrix in
the body

(4.8) Q;=0, i,j>2,
or
0 Qo ... Q
(4.9) Q= _?12 0 . 0
Q, 0 .. 0

According to (2.6), the angular momentum M is represented by the matrix M =
IQ + QI. By an appropriate orthogonal transformation which leaves the vector ¢,



162 YU. N. FEDOROV AND V. V. KOZLOV

invariant, the symmetric mass tensor I can be reduced to the form

In I ... L,
I I ... 0
(4.10) r=|" R
L, 0 ... I,

(the constraint equations (4.8) do not change under such a transformation). There-
fore, equations (4.6) can be represented as follows

0 o0 0 ... 0
0 0 Ay ... A

(4.11) M=[M,Q]+A, A=10 -4 0 ... A3 |,
0 —dow —Ay ... 0

where 4;; are Lagrange multipliers. Taking into account (4.8) and (4.10), we obtain
from (4.11) the following closed system for the entries Q5 , ..., Qi,

(I +In)Qp = 1n(Q + Q} + - + Q)
— (13Qu3 + 1aQyg + - + 1,Q1,) Qi
(In +I3) Qi3 = 13(Q3, + Q4 + - + Q)
(4.12) — (I3Qu3 + LaQua + - -+ + 11,Q1,) 3,
(Ill + Inn)an = Iln(Q%Z + 9%3 R Q%,n~1)
— Q0+ 13Quis+ -+ Iy 1Q0 1) Qs
The equations for other Q;;’s can be used to determine the multipliers 4;;, i, j >
2.
In the special case 1), = --- = I, = 0, it follows from the equations (4.12) that
Qi2, ..., Qi, = const and the linear space in so(n) spanned by the admissible

velocities (4.9) is the eigenspace for the inertia operator A;: so(n) — so(n)*. In
the general case, equations (4.12) have the energy integral

2H(Q) = (In+ 1)+ (I +I33) Q4+ -4+ (I +1,,)Q3, = £, h = const.

Thus, if # > 0, we obtain a dynamical system on an (n — 2)-dimensional ellipsoid.
Now put

F = (I + In) 1:Q0; + (I + B3) [3Qus + -+ (I + Lin) 11,Q4,

Then the derivative of F () along the trajectories of the system (4.12) has the form

F= Z(lliglj — I;;Q,)%,

i<j
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and it is positive everywhere in so (n) except at the points of the line
(4.13) {Qi=Iou,...,Q,="IL.u, peR}.

These are the equilibrium points for the system (4.12). The line (4.13) meets the
ellipsoid H () = 4 in the two diametrically opposed points S, S*, in which the
hyperplane F(Q) = const is tangent to the ellipsoid. These points correspond to
stable and unstable permanent rotations of the body in a certain 2-plane v; A v,
which is fixed in the space, as well as in the body (so called plane rotations).

Since F > 0, all trajectories of the system (4.12) lying on one and the same
ellipsoid are double-asymptotic: they tend to the points S~ and S* as t — +oo

(Figure 2(a)).
. =

é) 2)

FIGURE 2

This picture represents an immediate generalization of the well-known phase
portrait of the classical Suslov problem where the ellipsoid { H (Q) = A} is reduced
to an ellipse. The latter lies in the plane given by the equation (4.7) (Figure 2b).
The motion of the n-dimensional rigid body is the asymptotic evolution from the
permanent rotation in some 2-plane fixed in the body to the permanent rotation in
the same 2-plane and with the same angular velocity, but in the opposite direction.
We emphasize, however, that in space these rotations for ¢+ — —oo and ¢t — +o00
occur in different 2-planes.

As in the three-dimensional case, equations describing the position of the body
in the space (i.e., the equations on the group SO(n)) seem to be nonintegrable.

What can one say about the analytic properties of the solutions of the system
(4.12)? In the case n = 3, as it was noticed by Suslov, these solutions turn out to
be meromorphic functions of the time . More exactly, they are expressed in terms
of fractional-rational functions of the form exp(bt) (b = const). (We leave the
proof of this fact to the reader as an exercise.) In the case n = 4, the situation is
different: the solutions of the system (4.12) generally branch in the complex plane.
This follows from



164 YU. N. FEDOROV AND V. V. KOZ1LOV

PROPOSITIONS. Letn > 4,1 #0, I)3 = --- = I}, = 0. Then the general solution
of the system (4.12) is single-valued if and only if I;3 = -+ - = I, = 0.

PROOF OF THE NECESSITY. Let us use the asymptotic Kowalewski—Lyapunov
method (see, for example, [24]). Note that if the conditions of Proposition 5
are fulfilled, the system (4.12) has the following particular solutions

(414) Q|2=a/t, QI3=a/t, QM:-'-:Q],,ZO,
a=(In+1In)/ly, B =-(+In)yh+1n)/1h.
The corresponding Kowalewski exponents are

_IntIy _In+ Iy
In+1u 77 hi+ 1,

The existence of the exponent 2 follows from the existence of the quadratic energy
integral. According to the Lyapunov theorem, if the solutions are single-valued,
then all the ratios (1;; + I33)/(I1) + I), s > 4, must be integers. Apart from
(4.14), equations (4.12) have other meromorphic solutions in which all the Q,,’s,
s > 3, except one, are zero. In this case, performing elementary computations and
using the Lyapunov theorem again, we came to the conclusion that the numbers
(I1y + Iy) /(111 + I ) for k , s > 3 must be integers as well. Then, since I, > 0, the
equalities /33 = - - - = I,,, must hold.
The proof of the sufficiency is left to the reader.

-1, 2,1

Thus, in the general case when I3, ..., I, are all different, the solutions of
(4.12) cannot be single-valued functions of complex time.

ExaMpPLE 5. Now consider the more general case when the left-invariant con-
straints are defined as follows

Q,‘jZO, i,j>2.

Suppose that the mass tensor I is diagonal, / = diag(l;, ..., I,). Then, in view of
(4.6), the EPS equations take on the following simple form

(I + L)Qu = (I~ 1)(Q13Q03 + -+ + ©1,Q24),

(h+ B)Qs = (I = L)Y, ..o, (I + 1,)Qy,
(4.15) = (I — 1,) 212, ,
(L+L)Qyn = (I — L), ..., (B +1,) Qs

= (I, — L)Q2Q, .

These equations have n — 1 quadratic integrals

2H = Y (L +1)97,
<2,
Fi =+ L)L - R)Qs+ (L + B)(L - 1;)Q3;,

Fooo= I+ L)L - 1), + (L+ 1)1 - 1,)93,,
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which enable one to solve the system (4.15) by quadratures.
Suppose, without loss of generality, that I; > I, > --- > I,,. Then the functions
Fi(Q), ..., F._»(Q) are positive definite and we come to

PROPOSITION 6. Ifcy, ..., ca— > 0 and
(416) C1/(12+I3)+~~+C,,_2/(12—|—I,,)<h,

then the integral surface

T: {Q|2HQ)=h,F(Q)=c,..., Fa2(Q) =cn2},
Cl, ..., Ch_2=const,

is the disjoint union of two (n — 2)-dimensional tori.

PrOOF. When ¢, > 0, the curve {F, = c,} on the plane (Q; ;42, Q2 ,12) is
an ellipse. Then, if condition (4.16) is fulfilled, €, does not vanish on 7 and
it is expressed in terms of the other €;;’s up to sign flip. Therefore, a connected
component of 7 is constructed as the topological product of circles.

Now define on 7 the angular variables ¢ , ..., @,_> by putting

C
Qi 2= 4/ u sin (;) ,
Lot (Il + Is+2)(12 - Is+2) (<P )

Cs

Q s. = Cos\ps ),
242 \/ GrLa) =L @)

and introduce the new time 7 by the formula dr = Q;, d¢. In view of the conditions
of Proposition 1, i, # 0 on 7. Therefore, 7 is a monotonic function of ¢, and,
using (4.15), we obtain

(4.17)

dpy dpp, >
(418) 71:[——\/1, ey dr = Vy-2,

v = (h - L)L - k) by = L - L)L -1,)
(h+ L) (L+5L) " (I + L)L + 1)
Equations (4.18) define a quasiperiodic motion on the (n —2)-dimensional tori with

fixed frequencies v; , ... , v4—2.
Going back to the original time ¢, we obtain the following system

dpy dpp2 Va2
(4.19) T g =

1 iy c Cs
F?2= Q <h - (—S— cos2(ps) — ~———— sin® (¢, ))
L+5L " Z L -1 (i) LI ()

s=1

This system has the integral invariant

mes (D) = / Fdyp...dp, .
D
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As shown by Kolmogorov, for almost all frequencies vy , ... , v,_, equations (4.19)
can be reduced to the form (4.18).

In conclusion, let us discuss the analytic properties of the solutions of system
(4.15). Putey,...,¢,.2=0. Then Qy = Qpy = --- = Q, =, =0, and
equations (4.15) reduce to a closed system for Q> , Q,3, (3, which coincides with
the equations of the integrable Euler problem. The solutions of the latter equations
are known to be elliptic, i.e., single-valued functions of time z. So one may ask
whether or not this property is valid for a// solutions of (4.15)? It turns out that in
general the answer is negative.

PROPOSITION 7. All the solutions of equations (4.15) are single-valued functions on
complex plane iff vi = --- = v, _s.

Proor. As above, we use the asymptotic Kowalewski-Lyapunov method. On
the one hand, system (4.15) has the following particular solution

o) a3 a3
le—T QH—T, Qp=—,
Qu==--=Q,=Q, =0,

s — (h + L)L + 1) n — (h + L)L+ L)
SO G /gy ATG Ay TN G-nE-n)

n — (L + L)L+ 1)
o (h-R)(L-1)"

The Kowalewski exponents for this solution are

pr==1,p=p3=2, pas=1xw/vi, ..., pruam—3=1Fv, 2/v.

If general solution of (4.15) is single-valued, then the ratios v, IVis oo s Va_2/vy
must be integers. On the other hand, for each 3 < i < n these equations have also
the particular solution

Qpu="2, Q="2, Q=2 Qe =Qu =0 (k#1i)

(the definition of the f’s is analogous to that of the a’s). Then the condition
for the corresponding Kowalewski exponents to be integers implies that the ratios
vi/vi, va/vi, ..., va_2/v; must be integers as well. Since v, > 0 for all s, we come
to the condition vy = --- = v, _».

Now let us prove the sufficiency of this condition. It turns out thatif v, = - .- =
v,_2 = v, then the solutions of (4.15) are elliptic functions of ¢. To show this,
we use the new time 7. Then, from (4.18) we have ¢, = vt + ¢, ©° = const
(1 <s <n—2). Since dr = Q,dt, in view of (4.19) we obtain

d
(4.20) z:/ i ,
\/1 — 3 misin2(vr + @)
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where ¢, u; are constants, and >, |¢;| < 1. This integral is known to be elliptic,
while sin (vz), cos (vt), as well as radical in (4.20), are elliptic functions of 7. Thus,
by (4.17), Q12, ... , Q). are single-valued functions of the complex time .

It is interesting to note that in the most general case the square of Q,, as well as
those of Q) 542, D ;12 (1 <5 < — 2), is an entire function of the new time 7.
This follows from (4.17) and the equation

d n
(L + 1) E?Q%z =2(L - II)ZQIkQZk-
k=3

It may happen that the EPS equations for the group SO(n) may also be integrable
in the more general case when, considered in certain frame, the mass tensor is of
diagonal form and the constraints are defined by any combination of equalities
Q,‘j =0.

As it was mentioned above, in EPS equations the kinetic energy (metric) and the
constraints are left-invariant on a Lie group. This gives the possibility to obtain a
closed system on the corresponding Lie algebra.

Now consider another interesting case of the Euler—Poincaré equations on Lie
groups when the kinetic energy is left-invariant, whereas the constraints are right-
invariant. These are so called L—R systems, studied by Veselov and Veselova [23].
The right invariance condition means that in coordinates in the Lie algebra g (in
quasivelocities) a constraint is determined by the relation

(Q, N) = const, Qcg, Neg*,

where, in contrast to the case of left-invariant constraints, Ad,; N = const.

ExaMpLE 6. The most descriptive illustration of an L-R system is the Veselova
problem concerning the rotations of a rigid body with a fixed point under the action
of the following nonholonomic constraint

(4.21) (w,7)=41, g = const

(the projection of the angular velocity vector w € R? to some unit vector y fixed in
space is constant) [9, 23]. Here & = SO(3) and the Euler—Poincaré equations (4.4)
along with the kinematic equations get the form

(4.22) Jo =Jo xw+ iy, y=yXxXm,

where, as before, J is the inertia tensor relative to the fixed point. Using this and
differentiating (4.21), we find

Vo xw, J7ly)
(. J7"y)

Note that the system (4.22) admits the following representation

0=0xw, J=yxw,

4.23
42 Q=Jo-(»,y)y, J'=J-E,
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E being the unit matrix. Hence the vector Q, similarly to y, is thus a fixed vector in
space. Therefore, the system possesses three independent integrals

(424) (Q)Q)’ (Q’Y):(a)’y)’ (V,}’):l-

The second integral coincides with the constraint equation. Since under the con-
dition ¢ # 0 the constraint (4.21) is nonstationary, the kinetic energy of the body
cannot be constant. However, instead of an energy integral, there exists the follow-
ing analog of the Jacobi—Painlevé integral

(4.25) (o, ) = 2(w, y)( 0, y).

Finally, the system considered in the phase space (@, y) has the integral invariant
with density \/(J~!y, y) and, therefore, it is integrable by the classical Jacobi
theorem. .

In addition to the multi-dimensional generalization of the Suslov problem, it is
worthwhile considering the generalization of the equations (4.22) which is an L-R
system on the group SO(n). In this case it is natural to take constraint equations in
form (4.9) with the only difference that Q. must be replaced by the angular velocity
in the space Q,. For the sake of generality, the zeros at the corresponding entries
can be replaced by arbitrary constants:

0 Qn ... Qp
o —Qp,
QK = RQ(R - . ~ H
(4.26) : Q
”an
ﬁij:const, 2<i<j<n.
Let {e;, ..., e,} be a fixed orthonormal basis in R", (e;;, ..., e;,) be the

projections of e¢; to the axes of an orthonormal frame attached to the body, so
that the rotation matrix is written in the form R = (e;...e,)7. Define 2-vectors
Ers) = e, Ne, € /\2 R*, r,s =1, ...n represented by the n x n skew symmet-
ric matrices 51-(;5) = e,e,; — €,;€,. These 2-vectors give an orthonormal basis in
so (n) with respect to the Killing form (- , - ). Therefore, (4.26) is equivalent to the
constraints

(4.27) Q, ) =§~2,->,-, 2<r<s<n,

where the £*)’s can be regarded as generalizations of the vector y in (4.21). The
corresponding Euler—Poincaré equations with multipliers, as well as the kinematic
equations, can be represented in the following matrix form

(4.28) M+[Q, M] = Z ,{(”)g(r.v)’ £ 4 Q, £ =0.
(rs)

2€r<s€n

As above, M = AQ is the angular momentum of the body with the inertia tensor A.
Differentiating (4.27) and using (4.28), we obtain the following system of linear
equations for determining the multipliers A,

(4.29) ATIEWD gty = (W) AT Q, M), 2<r<s<n.
(k1)
(k1)

2<k<i<n
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Now let H = span(e; A e, ..., e; Ae,) and H' be the orthogonal complement
to H in /\2 R”. It turns out that a part of the system (4.28) is separated and can be
written in the following commutative form

(430) Q = [Q, Q], é[ = *Qel 3
Q=M|p+Qy =Q+(M-QT -T'(M -Q), I'ij = eie;,

where M |y, Q|p+ are projections on the linear subspaces H , H' € /\2 R”. Equa-
tions (4.30) represent a closed system for determining Q and e; as functions of time
t. This system possesses multi-dimensional analogs of the integrals (4.24)

1 ,
(Q,Q):—Etr(MI’—i—I'M)Z, (e1, e),
Qijew + Qjreri + Qrier; = Qijer + Qe + Qpiey I<i<j<k<n.

Besides, it has an analog of the Jacobi-Painlevé integral (4.25), as well as the integral
invariant. In the variables (Q; , e1;) the latter has the density z = /det Ay, where
Al denotes the restriction of the operator A to the linear space H.

Similarly to the multi-dimensional generalization of the Chaplygin problem dis-
cussed in §2, the system (4.28) or (4.30) also may be integrable.

§5. Historical comments

The reader, familiar with studies on the dynamics of multi-dimensional rigid
bodies, may have already noticed that our references regarding the origins of the
basic concepts of the theory seem quite unusual. In this connection, the authors
would like to give some explanations.

In the current literature devoted to the formulation and the equations of the
multi-dimensional analog of the Euler problem, the reader is usually referred to
Arnold’s well-known paper [1], in which it is also shown that these equations are
Hamiltonian on the orbits of the coadjoint action of the group SO(n). However, as
it was mentioned above, more than a century ago, the idea of such a generalization
was put forward by Cayley [6], and in 1873 Frahm [10] obtained dynamical and
kinematic equations for the problem in explicit form. The latter also found a
complete set of trivial integrals which are analogs of the classical angular momentum
integral and the “area” integral. Moreover, for n = 4, he derived a condition on the
coeflicients of the inertia tensor for the dynamical equations to have an additional
quadratic integral and, thereby, to be integrable “by quadratures”. This condition,
in fact, coincides with the general relation (2.13). (At present, condition (2.13) has
become associated with the well-known Manakov paper [16]).

All this enables us to call the equations of free motion of the n-dimensional top
the Euler—Frahm equations.

After Frahm, this dynamical system was discovered by H. Weyl [25], 1923;
Blaschke [3], 1942 (of course, this list can be scarcely regarded as complete). Some
authors tried in vain to perform the explicit integration of the Euler-Frahm equa-
tions in the four-dimensional case without knowing that the scheme of such an
integration procedure had been given by Schottky as early as in 1891 [21]. The
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latter had noticed the remarkable connection (in fact an isomorphism) between the
integrable cases found by Frahm and Clebsch’s second integrable case of the Kirch-
hoff equations describing rigid body motion in an unbound volume of ideal liquid.
(Both are six-dimensional dynamical systems). Explicit integration of the latter
case had already been performed by that time by the brilliant analyst Kotter (see
[15]). AsSchottky asserted, K&tter’s method of integration could be applied (almost
without modifications) to Frahm’s case. Later the Schottky paper was forgotten,
and only in 1986 the explicit formulas describing the isomorphism mentioned above
were obtained again by Bobenko [4], while the generalized Euler equations for the
four-dimensional top, as well as the n-dimensional top, were integrated by using the
recently discovered finite-gap integration method.

Generally, the problem of explicit integration of dynamical systems in theta-
functions of time as a complex argument was very popular in Germany at the end
of the last century.

According to some publications, the equations for geodesics of left-invariant
metrics on Lie groups, regarded as natural generalizations of the Euler equations,
came into use quite recently. However, the real history is different. As early as in
1901, Poincaré represented the Lagrange equations in “group” variables. He gave
special attention to the case when the Lagrangian is a left-invariant function and
mentioned that half of the equations form a closed system defined on the corre-
sponding Lie algebra. As an example, he considered precisely the Euler equations
for the n-dimensional top.

It is interesting to note that this paper of Poincaré’s is well known to the physics
community and is practically unknown to mathematicians dealing with the theory
of Euler—Poincaré equations on Lie algebras!

It is also worth mentioning that physicists were definitely aware of the group
structure involved in many dynamical systems. For instance, in some publications it
is accepted that the interpretation of the Kirchhoff equations as the Euler—Poincaré
equations on the Lie algebra e (3) was first given by Novikov and Schmeltzer in [19].
But, as a matter of fact, the group structure of the Kirchhoff equations had been
already realized and presented in explicit form by Birkhoff and Braquell in 1945 (see
[2, 5]). Besides, even earlier, some researchers from the German applied mechanics
community had used the so-called Motor calculus (Motorrechnung), which is, in
fact, a matrix realization of the Lie algebra ¢(3). The main object of the theory
is represented by a second-order tensor (Impulsmotor), which turns out to be a
skew-symmetric analog of the kinetic momentum relative to the group E(3) defined
in (1.7) (see [18]).

The generalization of the Euler—Poincaré equations to systems with left-invariant
constraints (Euler—Poincaré—Suslov equations) seems to have been first considered
in the paper [13] dealing with the existence of an invariant measure, while the
same problem for systems with right-invariant constraints, as well as other relevant
questions, were discussed in [9, 23].
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