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Abstract—Properties of the solutions to differential equations on the torus with a complete
set of multivalued first integrals are considered, including the existence of an invariant measure,
the averaging principle, and the infiniteness of the number of zeros for integrals of zero-mean
functions along trajectories. The behavior of systems with closed trajectories of large period is
studied. It is shown that a generic system acquires a limit mixing property as the periods tend
to infinity.
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1. INTRODUCTION. MULTIVALUED INTEGRALS

Let T
n = {x1, . . . , xn mod 1} be the n-torus with angular coordinates (x1, . . . , xn) = x, and let

ẋ1 = v1(x1, . . . , xn), . . . , ẋn = vn(x1, . . . , xn) (1.1)

be differential equations on T
n (the functions v1, . . . , vn are 1-periodic in each coordinate x1, . . . , xn)

with sufficiently smooth right-hand sides. The meaning of “sufficiently” is to be rendered more
precise; at least, the results stated below are valid for infinitely differentiable functions v1, . . . , vn.

By a multivalued integral of system (1.1) we understand a closed (but not exact) 1-form ϕ on T
n

such that
ivϕ = 0, (1.2)

where v = (v1, . . . , vn). Locally, ϕ = dH, and

Ḣ =
∑ ∂H

∂xj
vj = iv dH = 0

according to (1.2). Thus, locally, the function H is an ordinary integral of system (1.1). On the
n-space R

n = {x1, . . . , xn} covering the torus T
n, the closed 1-form ϕ is exact, i.e., ϕ = dH, where

H is a single-valued function on R
n.

Example. Suppose that n = 2 and system (1.1) has an integral invariant
∫∫

ρ(x1, x2) dx1 dx2,

where ρ is a positive smooth function on T
2. The invariance condition reduces to the Liouville

equation
∂(ρv1)
∂x1

+
∂(ρv2)
∂x2

= 0.
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DYNAMICAL SYSTEMS WITH MULTIVALUED INTEGRALS 189

For this system, the differential 1-form

ϕ = −ρv2 dx1 + ρv1 dx2 (1.3)

is a multivalued integral. As a rule, one considers the case when system (1.1) has no equilibrium
states; then, the 1-form (1.3) is never exact on T

2.
Differential equations on the two-dimensional torus with an integral invariant and without sin-

gular points were studied by Poincaré [1] and Kolmogorov [2, 3]. The purpose of this paper is to
extend their classical results to the multidimensional case. The first results in this direction were
obtained by Arnold [4]. In [5, 6], Hamiltonian systems with complete sets of multivalued integrals
were considered.

Let Γ1, . . . ,Γn be a “canonical” system of basic 1-cycles on T
n, each of which once encircles the

torus: ∫

Γj

dxi = δij ,

where δij is the Kronecker delta. It is natural to call the numbers

aj =
∫

Γj

ϕ, 1 ≤ j ≤ n,

the periods of the multivalued “function” ϕ. If ϕ = dH, then

H = a1x1 + . . . + anxn + h(x1, . . . , xn), (1.4)

where h is a function on T
n (which is 1-periodic in x1, . . . , xn). We refer to the function H as a

multivalued integral of system (1.1) on T
n as well.

We study systems (1.1) that have n − 1 independent multivalued integrals H2, . . . ,Hn. Such
systems are called polyintegrable in [4]; physicists call them Nambu systems [7]. As S.P. Novikov no-
ticed, studying the so-called geometric limit of a strong magnetic field reduces to the analysis of some
special Hamiltonian systems with a multivalued Hamiltonian on Fermi surfaces (see surveys [8, 9]).

According to (1.4), we have

Hi(x) = ai1x1 + . . . + ainxn + hi(x1, . . . , xn); (1.5)

here,

aij =
∫

Γj

dHi.

Let H1 be another multivalued function on T
n, and let A = ‖aij‖ be the period matrix of

the 1-forms dH1, dH2, . . . , dHn. The matrix A is obtained from the Jacobi matrix of the functions
H1,H2, . . . ,Hn by averaging over T

n. The further considerations are based on the following theorem.
Theorem 1. Suppose that detA �= 0 and

∂(H1,H2, . . . ,Hn)
∂(x1, x2, . . . , xn)

�= 0 (1.6)

everywhere on T
n. Then, an invertible change of variables x �→ u mod 1 transforms system (1.1)

into the system
u̇j = αjr(u1, . . . , un), 1 ≤ j ≤ n, (1.7)

where αj = const and r : T
n → R.
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190 V.V. KOZLOV

Proof. We set
u1 = α1H1 + β1H2 + . . . + γ1Hn,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

un = αnH1 + βnH2 + . . . + γnHn,

(1.8)

where the vectors
ε1 = (α1, β1, . . . , γ1)T , . . . , εn = (αn, βn, . . . , γn)T

are defined by the relations
AT ε1 = e1, . . . , AT εn = en (1.9)

with e1 = (1, 0, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T being the basis vectors in R
n. Since the period

matrix A is nondegenerate, the coefficients in (1.8) are determined uniquely.
Taking into account formulas (1.5) and (1.9), we can represent the transformation (1.8) in the

form
u1 = x1 + α1h1 + . . . + γ1hn,

. . . . . . . . . . . . . . . . . . . . . . .

un = xn + αnh1 + . . . + γnhn.

(1.10)

Using (1.5) and (1.9), it is easy to prove that the transformation (1.8) (or, equivalently, (1.10)) is
nondegenerate:

∂(u1, . . . , un)
∂(x1, . . . , xn)

= (det A)−1 ∂(H1, . . . ,Hn)
∂(x1, . . . , xn)

�= 0 (1.11)

(see the assumption (1.6)). In particular, (1.10) defines a locally invertible mapping of T
n onto itself.

Note that the transformation (1.10), when treated as a self-mapping of R
n, takes the lattice Z

n to
itself (up to a translation). Therefore, formula (1.10) specifies an automorphism of T

n.
Since H2, . . . ,Hn are first integrals of (1.1), it follows that, in the new variables u1, . . . , un

mod 1, equations (1.1) take the form

u̇j = αjḢ1 = αjr(u),

where
r(u) = iv dH1|u, (1.12)

as required.
The degree of smoothness of the transformation rectifying the trajectories of system (1.1) co-

incides with that of the periodic functions h1, . . . , hn. The rectifiability of the trajectories of a
polyintegrable vector field on the three-dimensional torus was proved by Arnold under the assump-
tion that there are no singular points [4]. For n = 2, the condition v �= 0 implies that, in some
angular coordinates on T

2, we have
v1(x) �= 0. (1.13)

This fact is usually proved by applying the well-known Siegel’s theorem about integral curves on
the 2-torus [10] under the assumption that the system has an integral invariant. For n = 2, the
rectifiability of trajectories was proved in [2]. In the multidimensional case, Siegel’s theorem is, of
course, false. We emphasize that the absence of singular points is not assumed in Theorem 1.
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In what follows, we study system (1.1) under the assumption that v(x) �= 0 everywhere on T
n. If

the conditions of Theorem 1 hold, then the vector field (1.7) has no singular points either. Therefore,∑
α2

j �= 0, and the function r = iv dH1 vanishes nowhere. This implies, in particular, that (under
the conditions of Theorem 1) in the absence of singular points, there exist angular coordinates on T

n

in which (1.13) holds.
It turns out that system (1.1) has an integral invariant

∫
ρ(x) dnx (1.14)

with density

ρ =
1

iv dH1

∂(H1, . . . ,Hn)
∂(x1, . . . , xn)

. (1.15)

Let us prove this simple fact. Consider the differential n-form

Ω =
1

iv dH1
dH1 ∧ dH2 ∧ . . . ∧ dHn = ρ dx1 ∧ . . . ∧ dxn.

Since it is closed (as any n-form on n-space), its Lie derivative equals divΩ. On the other hand,

ivΩ = dH2 ∧ . . . ∧ dHn − 1
iv dH1

dH1 ∧ (iv dH2) ∧ . . . ∧ dHn + . . . = dH2 ∧ . . . ∧ dHn.

It remains to note that this form is closed.
Having the invariant measure (1.14), we can average the right-hand sides of system (1.1). As a

result, we obtain a simplified averaged system with constant vector field

ẋi = ωi, ωi =
∫

Tn

viρ dnx
/∫

Tn

ρ dnx. (1.16)

Of course, the averaging principle, which consists in replacing (1.1) by (1.16), must be justified.
Theorem 1 can be refined as follows.

Theorem 1′. Suppose that the conditions of Theorem 1 hold and iv dH �= 0. Then, αj = cωj ,
where c = const �= 0.

Curiously, in the first work by Kolmogorov [2] (where the case n = 2 was considered), nothing
was said about this. However, in [3], Kolmogorov stated a theorem on the rectification of trajectories
together with the equality αj = cωj .

Proof of Theorem 1′. We use the simple formula

vj =
∑ ∂xj

∂uk
u̇k =

(∑ ∂xj

∂uk
αk

)
r. (1.17)

On the other hand, relation (1.11) readily implies

ρ(x) dnx =
|A|−1

r(u)
dnu. (1.18)

Therefore, substituting (1.17) and (1.18) into (1.16), we obtain

ωj =
∫

Tn

(∑ ∂xj

∂uk
αk

)
dnu

/ ∫

Tn

dnu

r(u)
. (1.19)
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Inverting (1.10), we obtain simple formulas xj = uj + Xj , where Xj are 1-periodic functions of
u1, . . . , un. Since ∫

Tn

∂Xj

∂uk
dnu = 0,

it follows that ∫

Tn

(∑ ∂xj

∂uk
αk

)
dnu =

∑
δjkαk = αj .

Thus, (1.19) implies the required formula

ωj = αj

/∫

Tn

dnu

r
, (1.20)

which proves the theorem.
Formula (1.20) allows us to reformulate Theorems 1 and 1′ as follows: System (1.1) reduces to

the system
u̇j = ωj r̃(u1, . . . , un), 1 ≤ j ≤ n,

and the invariant measure dnu/|r̃ | is a probability measure:
∫

Tn

dnu

|r̃ | = 1.

2. GENERAL PROPERTIES OF SYSTEMS WITH MULTIVALUED INTEGRALS

We will examine the system of differential equations (1.7) under the condition r �= 0. For n = 2,
these equations have long been studied by many authors, including Poincaré [1]. System (1.7) has
an integral invariant with density

R(u) =
1

r(u)
.

We say that “frequencies” ω1, . . . , ωn are incommensurable if the resonance relation
∑

kjωj = 0

with integer kj holds only for k1 = . . . = kn = 0. These frequencies are said to be strongly
incommensurable if, for all integer vectors k �= 0, we have

|(ω, k)| ≥ λ|k|−ν , (2.1)

where λ and ν are positive constants. It is well known that the power estimate (2.1) is valid for
almost all vectors ω ∈ R

n.
Theorem 2. Suppose that R : T

n → R is an infinitely differentiable (analytic) function and
the frequencies ωj (or αj) are strongly incommensurable. Then, there exists an invertible infinitely
differentiable (analytic) change of variables u �→ w mod 1 that reduces system (1.7) to the form

ẇj = ωj, 1 ≤ j ≤ n. (2.2)

This is an extension of the well-known Kolmogorov’s theorem [2, 3] to the multidimensional case.
Theorem 2 justifies the averaging principle from Section 1 in the case of strongly incommensurable
frequencies.
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Theorem 2 was proved in [11] in a somewhat different form. A similar assertion for flows of
finite and infinite smoothness was proved later by Herman in [12]. The proofs given in [11] and [12]
are conceptually the same.

We say that system (1.7) reduces to the form (2.2) by an invertible continuous transformation
if there exists a homeomorphism ψ : T

n → T
n such that the diagram

T
n gt

v−−−−→ T
n

ψ

⏐⏐	
⏐⏐	ψ

T
n gt

ω−−−−→ T
n

(2.3)

is commutative for all values of time t. Here, gt
v and gt

ω are the phase flows of the differential
equations (1.7) and (2.2), respectively.

If ψ is a continuously differentiable transformation, then the commutativity of diagram (2.3)
means that the substitution w = ψ(u) transforms the system of equations (1.7) into system (2.2).

Theorem 3. Suppose that the frequencies ω1, . . . , ωn are incommensurable and system (1.7)
reduces to the form (2.2) by an invertible continuous transformation. Then, the integral

τ∫

0

[R(ω1t, . . . , ωnt) − 〈R〉] dt, 〈R〉 =
∫

Tn

R(u) dnu, (2.4)

is bounded as a function of the upper limit τ .
It is well known that in this case (2.4) is a conditionally periodic function of τ . Otherwise,

the required reduction is impossible. It is this form in which Poincaré stated his conjecture on the
irreducibility of system (1.7) [1].

The irreducibility condition can be formulated in a somewhat different form. Let
∑

Rme2πi(m,u), m ∈ Z
n,

be the Fourier series of the invariant-measure density R.
Theorem 4. If ω1, . . . , ωn are incommensurable and

∑′
∣∣∣∣

Rm

(m,ω)

∣∣∣∣
2

= ∞, (2.5)

then there exists no invertible continuous transformation that would reduce system (1.7) to the
form (2.2).

Condition (2.5) is a continuous analog of the divergence condition for series (8) from [2]. Re-
finements and strengthenings of Kolmogorov’s reducibility theorem (for n = 2) are given in [13–15].
Conditions for the reducibility and irreducibility of system (1.7) to the form (2.2) (and their discrete
analogs) in the case of strongly incommensurable frequencies (to be more precise, in the case when
the vector with components (ω1/ωn, . . . , ωn−1/ωn) is Diophantine) can be found in [16, 17].

Let us return to the initial system (1.1) with multivalued integrals. Suppose that the conditions
of Theorems 1 and 1′ hold. Let gt be the phase flow of system (1.1), and let ρ again denote the
density (1.15) of the integral invariant.

Theorem 5. If ω1, . . . , ωn are incommensurable and f is a Riemann integrable function on T
n,

then

lim
τ→∞

1
τ

τ∫

0

f(gt(x)) dt =
∫

Tn

fρ dnx
/ ∫

Tn

ρ dnx (2.6)

uniformly in x.
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This is a simple generalization of the classical Weyl’s theorem on uniform distribution. Of
course, it is assumed here that the function t �→ f(gt(x)) is Riemann integrable for t ≥ t0 and all
x ∈ T

n. Among other things, Theorem 5 implies that for incommensurable ω1, . . . , ωn, the phase
flow of system (1.1) is strictly ergodic. If the frequencies ω1, . . . , ωn are commensurable, then the
limit on the left-hand side of (2.6) exists for all x; this limit is a Riemann integrable function f̄(x)
invariant with respect to the phase flow gt and satisfying the relation

∫

Tn

f̄ρ dnx =
∫

Tn

fρ dnx.

Theorem 6. Let f be a continuous function on the torus and 〈f〉 be the mean on the right-hand
side of (2.6). Then, there exists an x ∈ T

n such that
(1) f(x) = 〈f〉;
(2)

∫ τ
0 f(gt(x)) dt − 〈f〉τ ≥ 0 (≤ 0) for all τ ∈ R.

We emphasize that the frequencies ω1, . . . , ωn are not assumed to be rationally incommensu-
rable. Theorem 6 generalizes and strengthens the well-known Bohl’s theorem on the integrals of
conditionally periodic functions [18].

Theorem 7. Suppose that f, h1, . . . , hn, iv dH1 are infinitely differentiable functions on T
n,

the frequencies ω1, . . . , ωn are incommensurable, and f(x) �= 〈f〉. Then, the function

τ �→
τ∫

0

f(gt(x)) dt − 〈f〉τ (2.7)

has infinitely many zeros as τ → ∞.
Apparently, Theorem 7 is also valid for functions with a finite smoothness degree that depends

on n. For example, in the case of n = 2, C1 smoothness is sufficient. However, for continuous f
Theorem 7 is false. In [19], a counterexample for n = 2 was constructed, in which system (1.1) has
a very simple form: ẋ1 = 1, ẋ2 =

√
2.

For completeness, we state another theorem on the oscillations of the function (2.7).
Theorem 8. Suppose that f is a Lebesgue integrable function and the frequencies ω1, . . . , ωn

are incommensurable. Then, for almost all (with respect to the Lebesgue measure) x ∈ T
n, the

function (2.7) changes sign infinitely many times as τ → ∞ in the weak sense, i.e., this function
cannot be positive or negative starting from some τ .

An example constructed in [19] shows that even for a continuous function f , the exceptional set
of points in T

n may be dense in the torus.

3. DIFFUSION AND LIMIT MIXING

In this section, we continue the study of system (1.7) to which the original system (1.1) reduces
under the assumptions of Theorem 1. Let F and G be arbitrary square integrable (with respect to
the invariant measure dµ = R(u) dnu) functions on T

n, and let gt be the phase flow of system (1.7).
We set

K(t) =
∫

Tn

F (gt(u))G(u)R(u) dnu. (3.1)

If this function tends to ∫

Tn

FR dnu

∫

Tn

GR dnu
/ ∫

Tn

R dnu (3.2)

as t → ∞, then system (1.7) has the mixing property.
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The mixing properties of system (1.7) for n = 2 were studied already by Poincaré [1], who gave,
in particular, a precise definition of systems with mixing. He also conjectured that the system has
the mixing property if the integral (2.4) is unbounded. In this case (by Theorem 3), system (1.7)
cannot be reduced to a system of the form (2.2), and the latter is obviously not mixing.

Poincaré’s conjecture was disproved for n = 2 in [20, 21] by using cyclic approximations. The
stronger assertion that the system has the uniform recurrence property in the two-dimensional case
was proved in [19]: If R ∈ C1 and α2/α1 is irrational, then there exists an unbounded sequence of
time points tn such that

‖gtn(x) − x‖ → 0 (3.3)

as n → ∞ uniformly in x. On the other hand, if the function r in (1.7) has a singularity, then
mixing may occur even for n = 2 [22, 23].

We say that system (1.7) has the diffusion property if, for all F,G ∈ L2(Tn), the function (3.1)
has a limit as t → ∞ (which does not necessarily coincide with (3.2)). To better understand this
definition, consider the case when F is the density of a probability distribution on the torus, i.e.,
F ≥ 0 and ∫

Tn

FR dnu = 1.

Let G be the characteristic function of a measurable domain D ⊂ T
n. Then, K(t) is the probability

that the system is in the domain D at time −t. For systems with mixing, this probability tends
to the proportion of D as t → ∞, namely, to µ(D)/µ(Tn). For systems with diffusion, the prob-
ability simply tends to a certain limit, and therefore one can speak of the limit state of statistical
equilibrium.

In system (1.7), each point has an individual recurrence property (this is the Kronecker theorem).
The presence of diffusion implies that the recurrence property is nonuniform. For n ≥ 3, (3.3) does
not hold. In relation to this remark, we mention the following important result from [24]: There
exist incommensurable numbers α1, . . . , αn, where n ≥ 3, and an analytic function R : T

n → R such
that (1.7) is a system with mixing.

If the numbers α2, . . . , αn have rational expressions in terms of α1, then all trajectories of
system (1.7) are closed and the system cannot therefore be ergodic. In particular, mixing is out of
the question. However, since the rotation periods on different trajectories do not coincide in the
general case, there is no uniform recurrence and so diffusion may occur.

Thus, suppose that

α2 =
p2

q2
α1, . . . , αn =

pn

qn
α1, (3.4)

where pj and qj, j ≥ 2, are coprime integers. All trajectories are periodic; they can be indexed
by the points of the (n − 1)-torus T

n−1 = {u1 = 0} ⊂ T
n, which intersects all the trajectories.

Each closed trajectory has countably many periods, but all of them are multiples of one period.
In general, the periods P of closed trajectories can be chosen so that they smoothly depend on
the trajectories. Thus, we have a positive period function P : T

n−1 → R for closed trajectories. If
the function R is infinitely differentiable (analytic), then so is P . Of course, the function P has
critical points (e.g., points of maximum and minimum). The further results substantially depend
on whether these points are nondegenerate or not.

Theorem 9. If the integers q2, . . . , qn are pairwise coprime and P : T
n−1 → R is a Morse

function (all of its critical points are nondegenerate), then system (1.7) has the diffusion property
(i.e., for any F and G in L2, (3.1) has a limit as t → ∞).
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Remark 1. It is unclear to what extent the assumption that (qi, qj) = 1 for i < j is essen-
tial. For n = 2, it holds trivially. Apparently, the assumption that the critical points of P are
nondegenerate can be replaced by the requirement that they have finite multiplicity.

Now, take functions F and G in L2(Tn) and consider the sequences of rational numbers
(

p2

q2

)

s

, . . . ,

(
pn

qn

)

s

, s ≥ 1, (3.5)

determined by (3.4), which converge to ν2, . . . , νn, respectively, as s → ∞. Obviously, for any
ν2, . . . , νn, the convergent sequences (3.5) can be selected so that the denominators are pairwise
coprime. Then the function K(t) defined by (3.1) depends on s (to be more precise, the phase flow
of system (1.7) with the coefficients αj defined by (3.4) and (3.5) depends on s); we denote this
function by Ks(t). Each set of rational numbers (3.5) corresponds to its own period function Ps of
closed trajectories. If the critical points of Ps are nondegenerate, then (by Theorem 9) Ks(t) → κs,
where κs = const, as t → ∞.

Theorem 10. If the numbers 1, ν2, . . . , νn are incommensurable and Ps is a Morse function
for all s ≥ 1, then

lim
s→∞

κs =
∫

Tn

FR dnu

∫

Tn

GR dnu
/ ∫

Tn

R dnu. (3.6)

This property can be called limit mixing. It is observed in computer simulations: when incom-
mensurable numbers αj/α1, j ≥ 2, are replaced by irreducible fractions pj/qj with large pj and qj ,
system (1.7) becomes virtually indistinguishable from a system with mixing.

Theorems 9 and 10 were stated in [25] for n = 2. To conclude this section, we make a few
remarks.

A. The period function P can be obtained by averaging the function R over the closed trajec-
tories of system (1.7). Indeed, we have

R(u) duj = αj dt, j ≥ 1.

Since duj/αj = du1/α1, these relations are equivalent to the single equation

R(u) du1 = α1 dt. (3.7)

Taking into account (3.4), we see that the closed trajectories of system (1.7) have the form

uj =
pj

qj
u1 + cj , cj = const, j ≥ 2.

According to (3.7), we have

k∫

0

R

(
u,

p2

q2
u + c2, . . . ,

pn

qn
u + cn

)
du = α1P, (3.8)

where P is the period of a closed trajectory and k is an integer equal to the number of rotations of
closed trajectories along the cycle Γ1. Clearly, the numbers c2, . . . , cn mod 1 (the points of T

n−1)
index closed trajectories, and the period is a function of c2, . . . , cn.

B. Is there a relationship between the limit mixing property (see Theorem 10) and the conditions
for system (1.7) to be irreducible to system (2.2) (Theorems 3 and 4)? To better understand
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this question, consider the case in which R is a trigonometric polynomial (i.e., the Fourier series
of R contains only finitely many harmonics). In this case, equations (1.7) reduce to (2.2) for any
incommensurable set of α1, . . . , αn. Now, let us approximate the ratios α2/α1, . . . , αn/α1 by a
sequence of rationals (3.5). It is easy to show that if α1, . . . , αn are incommensurable, then, starting
with some s, the period function (3.8) is identically constant. Therefore, if R is a trigonometric
polynomial, then the conditions of Theorem 10 are surely violated. Roughly speaking, Theorem 10
is valid only for those functions R whose Fourier series contain “almost all” harmonics. Precisely
for such R, equations (1.7) do not reduce to (2.2) for an appropriate nonresonant set of α1, . . . , αn.
However, this statement needs to be rendered more rigorous.

In any case, Theorem 10 does not contradict the absence of mixing in system (1.7) for strongly
incommensurable sets of α1, . . . , αn. If (1.7) reduces to (2.2), then the function (3.1) oscillates and,
therefore, has no limit as t → ∞ in the standard sense. However, it converges to (3.2) in the sense
of Cesaro. Theorem 10 shows that under some additional conditions, the Cesaro convergence can
be replaced by the convergence for a sequence of systems of the form (1.7) with rational αj/α1.

C. A similar object is encountered in the Poincaré theory of birth of nondegenerate periodic
solutions under perturbations of nondegenerate completely integrable systems with compact level
surfaces of the first integrals [26]. The key idea is to average the perturbing function over the closed
trajectories of a completely resonant invariant torus of the unperturbed system. If the result of
averaging is a Morse function on the family of closed trajectories, then, under perturbation, this
family gives rise to a pair of nondegenerate periodic trajectories.

D. Theorems 9 and 10 can be somewhat generalized. To this end, consider a sequence of
special resonant tori that tend to a torus with incommensurable α1, . . . , αn. The resonant tori are
determined by l relations of the form

k11α1 + . . . + k1nαn = . . . = kl1α1 + . . . + klnαn = 0 (3.9)

with linearly independent integer vectors

(k11, . . . , k1n), . . . , (kl1, . . . , kln).

Using (3.9), we can linearly express n − l frequencies αj in terms of the remaining frequencies; the
remaining l frequencies are assumed to be strongly incommensurable. Under these conditions, the
torus T

n is fibered into an (n − l)-parameter family of invariant l-tori, and equations (1.7) can be
reduced to the form (2.2) on each of these tori.

Next, we average the function R over the strongly nonresonant l-tori. The most important
condition for what follows is that, after averaging, we obtain a Morse function on the (n− l)-torus.

Under the above assumptions, equalities (3.9) imply that system (1.7) has the diffusion property
(this is a generalization of Theorem 9). Moreover, if each of the resonant tori in the sequence specified
above satisfies these conditions, then the limit equality (3.6) from Theorem 10 is valid.

4. PROOFS

1◦. To prove Theorem 2, consider the transformation u1, . . . , un �→ w1, . . . , wn mod 1 defined by

wj = uj +
αj

〈R〉 f(u1, . . . , un), 1 ≤ j ≤ n, (4.1)

where 〈R〉 is the mean value of the periodic function R(u) = 1/r(u) over the torus T
n = {u mod 1}

and f : T
n → R satisfies the linear partial differential equation

∑ ∂f

∂uj
αj = R − 〈R〉.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 256 2007



198 V.V. KOZLOV

This equation is easily solved by the Fourier method:

f(u) =
∑

m

′ Rm

2πi(m,α)
e2πi(m,u), m ∈ Z

n \ {0},

where Rm are the Fourier coefficients of the function R. Since the numbers |(m,α)| obey the power
estimate (2.1) and the Fourier coefficients of an infinitely differentiable (analytic) function decrease
faster than any degree of |m| (at an exponential rate), it follows that this series converges to a
smooth (analytic) function.

In the new variables w mod 1, equations (1.7) take the form

ẇj = u̇j +
αj

〈R〉
∑ ∂f

∂uk

αk

R
=

αj

R
+

αj

〈R〉
R − 〈R〉

R
=

αj

〈R〉 = ωj.

The last equality follows from (1.20).
It remains to be shown that the change of variables (4.1) defines a diffeomorphism of the torus.

It is easy to calculate the Jacobian of the transformation (4.1):

∂(w1, . . . , wn)
∂(u1, . . . , un)

=
R

〈R〉 .

Therefore, the change (4.1) is nondegenerate. Let us prove that it is one-to-one. First, the trans-
formation (4.1) leaves all lines on T

n of the form

t �→ u0 + αt, t ∈ R,

invariant. Second, the components of the vector function

w(t) = u0 + αt +
α

〈R〉 f(u0 + αt)

monotonically depend on t:

ẇ =
α

〈R〉 R(u0 + αt).

This completes the proof of Theorem 2.
2◦. Let us prove Theorem 3. For simplicity, we assume that α1 = 1. Consider a solution of (1.7)

with zero initial condition for t = 0. Obviously, uj = αju1. Since u̇1 = R−1(u), we have

dt

du1
= R(α1u1, α2u2, . . . , αnun)

on this solution. Let R = 〈R〉 + R̃, where 〈R̃〉 = 0. Then,

t = 〈R〉u1 +

u1∫

0

R̃(α1τ, . . . , αnτ) dτ. (4.2)

Since the numbers α1, . . . , αn are incommensurable and 〈R̃〉 = 0, it follows from the Weyl theorem
that the integral on the right-hand side of (4.2) is o(u1).

Now, suppose that there exists a continuous invertible transformation ψ : u �→ w of the torus
(with a continuous inverse ψ−1) that conjugates the phase flows of the systems of differential equa-
tions (1.7) and (2.2). Then,

gt
v = ψ−1gt

ωψ
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and
u(t) = gt

v(u) = ψ−1gt
ωψ(u) = ψ−1gt

ω(w) = ψ−1(w(t)).

Since ψ is a self-homeomorphism of T
n, exp{2πi uk(t)} are single-valued continuous functions of

w1 = w0
1 + ω1t, . . . , wn = w0

n + ωnt. Applying the theorem about the argument of a conditionally
periodic function, we obtain, in particular,

u1 = λt + f(t), f(t) = O(1).

Since u̇1 �= 0, there exists an inverse function t = t(u1), and

t =
u1

λ
+ O(1). (4.3)

Indeed, let t = u1/λ + g(u1). Then,

t =
λt + f(t)

λ
+ g(λt + f(t)).

This implies

g(u1) = −f(u1/λ + g(u1))
λ

= O(1).

Comparing (4.2) and (4.3), we obtain λ = 〈R〉−1, and the integral in (4.2) is bounded, as required.
3◦. If the integral in (4.2) is bounded, then it is a conditionally periodic function of u1. Therefore,

its Fourier coefficient corresponding to the harmonic

exp{2πi(m1α1 + . . . + mnαn)u1},
∑

m2
j �= 0,

is equal to
Rm

2πi(m,α)
.

The inequality
∑′

∣∣∣∣
Rm

(m,α)

∣∣∣∣
2

< ∞,

which is a necessary condition for reducibility, is the Bessel inequality for the Fourier coefficients of
a conditionally periodic function. To complete the proof of Theorem 4, it suffices to recall that the
sets of numbers α1, . . . , αn and ω1, . . . , ωn are proportional.

4◦. Theorem 5 easily follows from Weyl’s uniform distribution theorem. By virtue of (1.20), it
is sufficient to consider differential equations of the form (1.7). Let us perform a change of time
t �→ τ along trajectories of (1.7) by the formula

dτ =
dt

R(u)
. (4.4)

Then system (1.7) takes the form
duj

dτ
= αj .

A general solution to this system is given by uj = u0
j + αjτ . Therefore,

t =

τ∫

0

R
(
u0

1 + α1s, . . . , u0
n + αns

)
ds.
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Since the numbers α1, . . . , αn are incommensurable, it follows from Weyl’s theorem that t =
〈R〉τ + o(τ). Therefore,

τ =
t

〈R〉 + o(t).

Next,

1
T

T∫

0

f(u(t, u0)) dt =
1
T

T ′∫

0

f(ατ + u0)R(ατ + u0) dτ, T =

T ′∫

0

R(ατ + u0) dτ. (4.5)

This equality does not change when both integrals on its right-hand side are divided by T ′. Clearly,
T ′ → ∞ as T → ∞. Applying again Weyl’s theorem, we obtain

lim
T→∞

1
T

T∫

0

f(u(t, u0)) dt =
∫

Tn

fRdnu
/ ∫

Tn

R dnu,

as required.

5◦. Let us prove Theorem 6. First, suppose that 〈f〉 = 0. By (4.5), we have

T∫

0

f(u(t, u0)) dt =

T ′∫

0

ϕ(ατ + u0) dτ, (4.6)

where ϕ = fR. Since 〈f〉 = 0, it follows that
∫

Tn

ϕdnu =
∫

Tn

fRdnu = 0.

According to the generalized Bohl theorem proved in [19], there exists a u0 ∈ T
n such that

(a) ϕ(u0) = 0;
(b) the integral (4.6) is a nonnegative (nonpositive) function of T ′.

Since R �= 0, property (a) is equivalent to the condition f(u0) = 0. On the other hand, since
T is a monotone function of T ′, the integral on the left-hand side of (4.6) is also nonnegative
(nonpositive) for all values of T .

If 〈f〉 �= 0, then f should be replaced by f − 〈f〉.
6◦. Theorem 7 follows from the well-known results on the integrals of conditionally periodic

functions (see [19] for n = 2 and [27] for n > 2) and from the arguments used in the proofs of
Theorems 5 and 6.

7◦. Theorem 8 follows from a general result on ergodic transformations [28]. This result was
stated and proved in [28] for discrete transformations, but the proof for continuous flows is based
on the same ideas.

8◦. Let us prove Theorem 9. Suppose that the numbers α1, . . . , αn satisfy (3.4). We pass to
new variables z1, . . . , zn by making the change

z1 = p2u1 − q2u2, . . . , zn−1 = pnu1 − qnun, zn = s1u1 + s2u2 + . . . + snun,
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where sj are integers and the n × n matrix
⎛

⎜⎜⎝

p2 −q2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
pn 0 0 . . . −qn

s1 s2 s3 . . . sn

⎞

⎟⎟⎠ (4.7)

is unimodular.
Let us show that if (pi, qi) = 1 and (qi, qj) = 1 for all i < j, then we can indeed render the

matrix (4.7) unimodular by suitably selecting the integers sj. The determinant of this matrix equals

s1k1 + s2k2 + . . . + snkn,

where
k1 = q2q3 . . . qn, k2 = p2q3 . . . qn, . . . , kn = pnq2 . . . qn−1.

It is sufficient to show that the integers k1, . . . , kn are coprime. Suppose that a prime p divides
all kj : p | kj . Since p | k1, one of the numbers q2, . . . , qn, say q2, is divisible by p. Since p | k2 and
q3, . . . , qn are coprime to q2, it follows that p | p2. But this contradicts the assumption that the
fraction p2/q2 is irreducible.

In the new variables, system (1.7) takes the form

ż1 = . . . = żn−1 = 0, żn = Ω/R(z), (4.8)

where Ω =
∑

sjαj �= 0 and R(z) is the density of the invariant measure in the angular variables
z1, . . . , zn.

We can further simplify system (4.8) by eliminating the dependence of the right-hand side on
the coordinate zn. For this purpose, we introduce new angular variables y1, . . . , yn−1, x mod 1
defined by

y1 = z1, . . . , yn−1 = zn−1, x =
1
λ

zn∫

0

R(s, y1, . . . , yn−1) ds,

where

λ =

1∫

0

R(s, y1, . . . , yn−1) ds �= 0.

This change is nondegenerate because

∂(y1, . . . , yn−1, x)
∂(z1, . . . , zn−1, zn)

=
R

λ
. (4.9)

In the new variables, equations (4.8) take the form

ẏ = 0, ẋ = ω(y), (4.10)

where y = (y1, . . . , yn−1) is a point of the (n − 1)-torus and

ω(y) = Ω/λ(y).

According to (4.9), the invariant measure R(z) dnz is expressed as λ(y) dn−1y dx in the variables
x, y mod 1, the points y ∈ T

n−1 index the closed orbits, and the period function P of the closed
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orbits equals λ(y)/Ω. Clearly, the smooth functions y �→ P (y) and y �→ ω(y) are Morse functions
simultaneously. A general solution to system (4.10) has the form

x = ω(y)t + x0, y = y0, x0, y0 = const.

Let A and B be functions on T
n = {x, y mod 1} that are square integrable with respect to the

invariant measure λdn−1y dx (for definiteness, we assume that λ > 0). Set

a(y) =

1∫

0

A(x, y) dx and b(y) =

1∫

0

B(x, y) dx.

Clearly, the functions a and b belong to L2(Tn−1). By Fubini’s theorem, the functions A and B (as
functions of x) are square integrable for almost all y ∈ T

n−1. Let
∑

am(y) e2πimx and
∑

bm(y) e2πimx

be their Fourier series. Obviously, am, bm ∈ L2(Tn−1) for all m ∈ Z.
We will prove an assertion somewhat stronger than that of Theorem 9, namely,

lim
t→∞

∫

Tn

A(x − ω(y)t, y)B(x, y)λ(y) dx dn−1y =
∫

Tn−1

abλ dn−1y. (4.11)

The integral on the left-hand side of (4.11) equals
∫

Tn−1

∑
a−mbmλe−2πim ω(y)t dn−1y. (4.12)

First, let us show that this series converges (uniformly in t). For this purpose, it suffices to prove
that

∑

m

∫

Tn−1

|a−mbm|λdn−1y < ∞. (4.13)

Indeed,
|a−mbm| + |amb−m| ≤ a−mam + b−mbm.

On the other hand, the Bessel inequality for functions in L2 implies

∑
a−mam ≤

1∫

0

A2 dx and
∑

b−mbm ≤
1∫

0

B2 dx.

Therefore, the left-hand side of (4.13) cannot exceed
∫

Tn

(A2 + B2)λdx dn−1y.

By the Lebesgue theorem (in view of (4.13)), the integrand in (4.12) is indeed integrable, and
the integral (4.12) can be represented as

∫

Tn−1

abλ dn−1y +
∑

m�=0

∫

Tn−1

a−mbmλ e−2πim ω(y)t dn−1y. (4.14)
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Each term in the second sum tends to zero as t → ∞. Indeed, the product a−mbmλ is an
integrable function on T

n−1, and the function y �→ ω(y) has only nondegenerate critical points
on T

n−1. Therefore, the required assertion follows from a well-known general result of the theory
of Fourier transforms (see, e.g., [29]).

Since the series (4.13) converges, the infinite sum of the terms with numbers |m| ≥ N(ε) in (4.14)
can be made smaller than ε/2. The remaining terms with m �= 0 and |m| < N(ε) tend to zero as
t → ∞, and their sum is therefore less than ε/2 for sufficiently large t, as required.

9◦. It remains to prove Theorem 10. Using formula (4.9) for the Jacobian of the transformation
z1, . . . , zn �→ y1, . . . , yn−1, x mod 1 and equations (4.10), we obtain

Ks(t) =
∫

Tn

F (x − ωs(y)t, y)G(x, y)λs(y) dx dn−1y,

where ωs(y) = Ωs/λs(y) with Ωs = const �= 0. Since λs is a Morse function, it follows from
Theorem 9 that

Ks(t) → κs =
∫

Tn−1

fs(y)gs(y)λs(y) dn−1y (4.15)

as t → ∞. Here, fs and gs are the mean values of Fs and Gs along the closed trajectories of
system (1.7) in which the coefficients α1, . . . , αn satisfy (3.4) with rational coefficients (3.5). We
also use the fact that λs do not depend on x. Moreover, λs are uniformly bounded, and

∫

Tn−1

λs(y) dn−1y =
∫

Tn

R(u) dnu. (4.16)

Let us show that

κs → 〈F 〉〈G〉
∫

Tn

R dnu (4.17)

as s → ∞. It is well known that continuous functions are everywhere dense in L2. Therefore, the
functions F and G can be approximated with any accuracy by continuous functions F̃ and G̃.

As s → ∞, the numbers α2/α1 = (p2/q2)s, . . . , αn/α1 = (pn/qn)s tend to ν2, . . . , νn, and the
numbers 1, ν2, . . . , νn are incommensurable; hence, according to [11, Chapter VII], f̃s and g̃s tend
to the spatial averages of the continuous functions F̃ and G̃, respectively; i.e.,

f̃s(y) → 〈F̃ 〉 =
∫

Tn

F̃R dnu
/ ∫

Tn

R dnu and g̃s(y) → 〈G̃〉 =
∫

Tn

G̃R dnu
/ ∫

Tn

R dnu (4.18)

uniformly in y ∈ T
n−1.

Let us estimate the difference of the integrals
∫

Tn−1

fsgsλs dn−1y and
∫

Tn−1

f̃sg̃sλs dn−1y (4.19)

using the identity fsgs = fsgs − f̃sgs + f̃sgs − f̃sg̃s + f̃sg̃s. By the Cauchy–Schwarz inequality,
⎡

⎣
∫

Tn−1

(
fs − f̃s

)
gsλs dn−1y

⎤

⎦
2

≤
∫

Tn−1

(
fs − f̃s

)2
λs dn−1y

∫

Tn−1

g2
sλs dn−1y. (4.20)
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Since fs, f̃s, and gs are obtained by averaging the functions F , F̃ , and G along closed trajectories,
it follows from the Bessel inequality that the integrals on the right-hand side of (4.20) do not exceed

∫

Tn

(
F − F̃

)2
R dnu and

∫

Tn

G2R dnu,

respectively. Therefore, the integrals of the functions fsgs and f̃sgs with respect to the measure
λs dn−1y differ little from each other (uniformly in s) provided that F and F̃ are close in the metric
of L2. The integrals of the functions f̃sgs and f̃sg̃s with respect to the same measure have the
same property. Thus, if F̃ and G̃ tend to F and G (in the metric of L2), then the difference of the
integrals (4.19) tends to zero uniformly in s.

According to (4.16) and (4.18), we have

lim
s→∞

∫

Tn−1

f̃sg̃sλs dn−1y = 〈F̃ 〉〈G̃〉
∫

Tn

R dnu. (4.21)

By the approximation assumption, 〈F̃ 〉 and 〈G̃〉 can be made arbitrarily close to 〈F 〉 and 〈G〉.
Therefore, the required relation (4.17) follows from (4.21). This completes the proof of the theorem.
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